Step |
Hyp |
Ref |
Expression |
1 |
|
pellexlem4 |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ≈ ℕ ) |
2 |
|
fzfi |
⊢ ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∈ Fin |
3 |
|
diffi |
⊢ ( ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∈ Fin → ( ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∖ { 0 } ) ∈ Fin ) |
4 |
2 3
|
mp1i |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∖ { 0 } ) ∈ Fin ) |
5 |
|
elopab |
⊢ ( 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑎 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝑎 = 〈 𝑦 , 𝑧 〉 → ( 1st ‘ 𝑎 ) = ( 1st ‘ 〈 𝑦 , 𝑧 〉 ) ) |
7 |
6
|
oveq1d |
⊢ ( 𝑎 = 〈 𝑦 , 𝑧 〉 → ( ( 1st ‘ 𝑎 ) ↑ 2 ) = ( ( 1st ‘ 〈 𝑦 , 𝑧 〉 ) ↑ 2 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑎 = 〈 𝑦 , 𝑧 〉 → ( 2nd ‘ 𝑎 ) = ( 2nd ‘ 〈 𝑦 , 𝑧 〉 ) ) |
9 |
8
|
oveq1d |
⊢ ( 𝑎 = 〈 𝑦 , 𝑧 〉 → ( ( 2nd ‘ 𝑎 ) ↑ 2 ) = ( ( 2nd ‘ 〈 𝑦 , 𝑧 〉 ) ↑ 2 ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝑎 = 〈 𝑦 , 𝑧 〉 → ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) = ( 𝐷 · ( ( 2nd ‘ 〈 𝑦 , 𝑧 〉 ) ↑ 2 ) ) ) |
11 |
7 10
|
oveq12d |
⊢ ( 𝑎 = 〈 𝑦 , 𝑧 〉 → ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = ( ( ( 1st ‘ 〈 𝑦 , 𝑧 〉 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 〈 𝑦 , 𝑧 〉 ) ↑ 2 ) ) ) ) |
12 |
|
vex |
⊢ 𝑦 ∈ V |
13 |
|
vex |
⊢ 𝑧 ∈ V |
14 |
12 13
|
op1st |
⊢ ( 1st ‘ 〈 𝑦 , 𝑧 〉 ) = 𝑦 |
15 |
14
|
oveq1i |
⊢ ( ( 1st ‘ 〈 𝑦 , 𝑧 〉 ) ↑ 2 ) = ( 𝑦 ↑ 2 ) |
16 |
12 13
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑦 , 𝑧 〉 ) = 𝑧 |
17 |
16
|
oveq1i |
⊢ ( ( 2nd ‘ 〈 𝑦 , 𝑧 〉 ) ↑ 2 ) = ( 𝑧 ↑ 2 ) |
18 |
17
|
oveq2i |
⊢ ( 𝐷 · ( ( 2nd ‘ 〈 𝑦 , 𝑧 〉 ) ↑ 2 ) ) = ( 𝐷 · ( 𝑧 ↑ 2 ) ) |
19 |
15 18
|
oveq12i |
⊢ ( ( ( 1st ‘ 〈 𝑦 , 𝑧 〉 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 〈 𝑦 , 𝑧 〉 ) ↑ 2 ) ) ) = ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) |
20 |
11 19
|
eqtrdi |
⊢ ( 𝑎 = 〈 𝑦 , 𝑧 〉 → ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) |
21 |
20
|
ad2antrl |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) → ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) |
22 |
|
simprrl |
⊢ ( ( 𝐷 ∈ ℕ ∧ ( 𝑎 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) → ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) |
23 |
|
simpl |
⊢ ( ( 𝐷 ∈ ℕ ∧ ( 𝑎 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) → 𝐷 ∈ ℕ ) |
24 |
|
simprr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) |
25 |
24
|
ad2antll |
⊢ ( ( 𝐷 ∈ ℕ ∧ ( 𝑎 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) → ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) |
26 |
|
nnz |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) |
27 |
26
|
ad2antrr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → 𝑦 ∈ ℤ ) |
28 |
|
zsqcl |
⊢ ( 𝑦 ∈ ℤ → ( 𝑦 ↑ 2 ) ∈ ℤ ) |
29 |
27 28
|
syl |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( 𝑦 ↑ 2 ) ∈ ℤ ) |
30 |
|
nnz |
⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℤ ) |
31 |
30
|
ad2antrl |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → 𝐷 ∈ ℤ ) |
32 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → 𝑧 ∈ ℕ ) |
33 |
32
|
nnzd |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → 𝑧 ∈ ℤ ) |
34 |
|
zsqcl |
⊢ ( 𝑧 ∈ ℤ → ( 𝑧 ↑ 2 ) ∈ ℤ ) |
35 |
33 34
|
syl |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( 𝑧 ↑ 2 ) ∈ ℤ ) |
36 |
31 35
|
zmulcld |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( 𝐷 · ( 𝑧 ↑ 2 ) ) ∈ ℤ ) |
37 |
29 36
|
zsubcld |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∈ ℤ ) |
38 |
|
1re |
⊢ 1 ∈ ℝ |
39 |
|
2re |
⊢ 2 ∈ ℝ |
40 |
|
nnre |
⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℝ ) |
41 |
40
|
ad2antrl |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → 𝐷 ∈ ℝ ) |
42 |
|
nnnn0 |
⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℕ0 ) |
43 |
42
|
ad2antrl |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → 𝐷 ∈ ℕ0 ) |
44 |
43
|
nn0ge0d |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → 0 ≤ 𝐷 ) |
45 |
41 44
|
resqrtcld |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( √ ‘ 𝐷 ) ∈ ℝ ) |
46 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( √ ‘ 𝐷 ) ∈ ℝ ) → ( 2 · ( √ ‘ 𝐷 ) ) ∈ ℝ ) |
47 |
39 45 46
|
sylancr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( 2 · ( √ ‘ 𝐷 ) ) ∈ ℝ ) |
48 |
|
readdcl |
⊢ ( ( 1 ∈ ℝ ∧ ( 2 · ( √ ‘ 𝐷 ) ) ∈ ℝ ) → ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ∈ ℝ ) |
49 |
38 47 48
|
sylancr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ∈ ℝ ) |
50 |
49
|
flcld |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ∈ ℤ ) |
51 |
50
|
znegcld |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ∈ ℤ ) |
52 |
37
|
zred |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∈ ℝ ) |
53 |
50
|
zred |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ∈ ℝ ) |
54 |
|
nn0abscl |
⊢ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∈ ℤ → ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) ∈ ℕ0 ) |
55 |
37 54
|
syl |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) ∈ ℕ0 ) |
56 |
55
|
nn0zd |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) ∈ ℤ ) |
57 |
56
|
zred |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) ∈ ℝ ) |
58 |
|
peano2re |
⊢ ( ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ∈ ℝ → ( ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) + 1 ) ∈ ℝ ) |
59 |
53 58
|
syl |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) + 1 ) ∈ ℝ ) |
60 |
|
simprr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) |
61 |
|
flltp1 |
⊢ ( ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ∈ ℝ → ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) < ( ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) + 1 ) ) |
62 |
49 61
|
syl |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) < ( ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) + 1 ) ) |
63 |
57 49 59 60 62
|
lttrd |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) + 1 ) ) |
64 |
|
zleltp1 |
⊢ ( ( ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) ∈ ℤ ∧ ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ∈ ℤ ) → ( ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) ≤ ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ↔ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) + 1 ) ) ) |
65 |
56 50 64
|
syl2anc |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) ≤ ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ↔ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) + 1 ) ) ) |
66 |
63 65
|
mpbird |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) ≤ ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) |
67 |
|
absle |
⊢ ( ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∈ ℝ ∧ ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ∈ ℝ ) → ( ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) ≤ ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ↔ ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ≤ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≤ ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) |
68 |
67
|
biimpa |
⊢ ( ( ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∈ ℝ ∧ ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ∈ ℝ ) ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) ≤ ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ≤ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≤ ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) |
69 |
52 53 66 68
|
syl21anc |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ≤ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≤ ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) |
70 |
|
elfz |
⊢ ( ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∈ ℤ ∧ - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ∈ ℤ ∧ ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ∈ ℤ ) → ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∈ ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ↔ ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ≤ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≤ ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) |
71 |
70
|
biimpar |
⊢ ( ( ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∈ ℤ ∧ - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ∈ ℤ ∧ ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ∈ ℤ ) ∧ ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ≤ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≤ ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) → ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∈ ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) |
72 |
37 51 50 69 71
|
syl31anc |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝐷 ∈ ℕ ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∈ ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) |
73 |
22 23 25 72
|
syl12anc |
⊢ ( ( 𝐷 ∈ ℕ ∧ ( 𝑎 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) → ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∈ ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) |
74 |
73
|
adantlr |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) → ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∈ ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) |
75 |
|
simprl |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ) |
76 |
75
|
ad2antll |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) → ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ) |
77 |
|
eldifsn |
⊢ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∈ ( ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∖ { 0 } ) ↔ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∈ ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ) ) |
78 |
74 76 77
|
sylanbrc |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) → ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ∈ ( ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∖ { 0 } ) ) |
79 |
21 78
|
eqeltrd |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) → ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) ∈ ( ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∖ { 0 } ) ) |
80 |
79
|
ex |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( ( 𝑎 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) → ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) ∈ ( ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∖ { 0 } ) ) ) |
81 |
80
|
exlimdvv |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( ∃ 𝑦 ∃ 𝑧 ( 𝑎 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) → ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) ∈ ( ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∖ { 0 } ) ) ) |
82 |
5 81
|
syl5bi |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } → ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) ∈ ( ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∖ { 0 } ) ) ) |
83 |
82
|
imp |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ) → ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) ∈ ( ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∖ { 0 } ) ) |
84 |
1 4 83
|
fiphp3d |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ∃ 𝑥 ∈ ( ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∖ { 0 } ) { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ≈ ℕ ) |
85 |
|
eldif |
⊢ ( 𝑥 ∈ ( ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∖ { 0 } ) ↔ ( 𝑥 ∈ ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∧ ¬ 𝑥 ∈ { 0 } ) ) |
86 |
|
elfzelz |
⊢ ( 𝑥 ∈ ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → 𝑥 ∈ ℤ ) |
87 |
|
simp2 |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑥 ∈ ℤ ∧ ¬ 𝑥 ∈ { 0 } ) → 𝑥 ∈ ℤ ) |
88 |
|
velsn |
⊢ ( 𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) |
89 |
88
|
biimpri |
⊢ ( 𝑥 = 0 → 𝑥 ∈ { 0 } ) |
90 |
89
|
necon3bi |
⊢ ( ¬ 𝑥 ∈ { 0 } → 𝑥 ≠ 0 ) |
91 |
90
|
3ad2ant3 |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑥 ∈ ℤ ∧ ¬ 𝑥 ∈ { 0 } ) → 𝑥 ≠ 0 ) |
92 |
87 91
|
jca |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑥 ∈ ℤ ∧ ¬ 𝑥 ∈ { 0 } ) → ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) |
93 |
92
|
3exp |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( 𝑥 ∈ ℤ → ( ¬ 𝑥 ∈ { 0 } → ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) ) ) |
94 |
86 93
|
syl5 |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( 𝑥 ∈ ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) → ( ¬ 𝑥 ∈ { 0 } → ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) ) ) |
95 |
94
|
impd |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( ( 𝑥 ∈ ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∧ ¬ 𝑥 ∈ { 0 } ) → ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) ) |
96 |
85 95
|
syl5bi |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( 𝑥 ∈ ( ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∖ { 0 } ) → ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) ) |
97 |
|
simp2l |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ≈ ℕ ) → 𝑥 ∈ ℤ ) |
98 |
|
simp2r |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ≈ ℕ ) → 𝑥 ≠ 0 ) |
99 |
|
nnex |
⊢ ℕ ∈ V |
100 |
99 99
|
xpex |
⊢ ( ℕ × ℕ ) ∈ V |
101 |
|
opabssxp |
⊢ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ⊆ ( ℕ × ℕ ) |
102 |
|
ssdomg |
⊢ ( ( ℕ × ℕ ) ∈ V → ( { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ⊆ ( ℕ × ℕ ) → { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ≼ ( ℕ × ℕ ) ) ) |
103 |
100 101 102
|
mp2 |
⊢ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ≼ ( ℕ × ℕ ) |
104 |
|
xpnnen |
⊢ ( ℕ × ℕ ) ≈ ℕ |
105 |
|
domentr |
⊢ ( ( { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ≼ ( ℕ × ℕ ) ∧ ( ℕ × ℕ ) ≈ ℕ ) → { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ≼ ℕ ) |
106 |
103 104 105
|
mp2an |
⊢ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ≼ ℕ |
107 |
|
ensym |
⊢ ( { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ≈ ℕ → ℕ ≈ { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ) |
108 |
107
|
3ad2ant3 |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ≈ ℕ ) → ℕ ≈ { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ) |
109 |
100 101
|
ssexi |
⊢ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ∈ V |
110 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 1st ‘ 𝑎 ) = ( 1st ‘ 𝑏 ) ) |
111 |
110
|
oveq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 1st ‘ 𝑎 ) ↑ 2 ) = ( ( 1st ‘ 𝑏 ) ↑ 2 ) ) |
112 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 2nd ‘ 𝑎 ) = ( 2nd ‘ 𝑏 ) ) |
113 |
112
|
oveq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 2nd ‘ 𝑎 ) ↑ 2 ) = ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) |
114 |
113
|
oveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) = ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) ) |
115 |
111 114
|
oveq12d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = ( ( ( 1st ‘ 𝑏 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) ) ) |
116 |
115
|
eqeq1d |
⊢ ( 𝑎 = 𝑏 → ( ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 ↔ ( ( ( 1st ‘ 𝑏 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) ) = 𝑥 ) ) |
117 |
116
|
elrab |
⊢ ( 𝑏 ∈ { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ↔ ( 𝑏 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∧ ( ( ( 1st ‘ 𝑏 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) ) = 𝑥 ) ) |
118 |
|
simprl |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) ∧ ( ( ( 1st ‘ 𝑏 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) ) = 𝑥 ) ∧ ( 𝑏 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) → 𝑏 = 〈 𝑦 , 𝑧 〉 ) |
119 |
|
simprrl |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) ∧ ( ( ( 1st ‘ 𝑏 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) ) = 𝑥 ) ∧ ( 𝑏 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) → ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) |
120 |
|
fveq2 |
⊢ ( 𝑏 = 〈 𝑦 , 𝑧 〉 → ( 1st ‘ 𝑏 ) = ( 1st ‘ 〈 𝑦 , 𝑧 〉 ) ) |
121 |
120
|
oveq1d |
⊢ ( 𝑏 = 〈 𝑦 , 𝑧 〉 → ( ( 1st ‘ 𝑏 ) ↑ 2 ) = ( ( 1st ‘ 〈 𝑦 , 𝑧 〉 ) ↑ 2 ) ) |
122 |
|
fveq2 |
⊢ ( 𝑏 = 〈 𝑦 , 𝑧 〉 → ( 2nd ‘ 𝑏 ) = ( 2nd ‘ 〈 𝑦 , 𝑧 〉 ) ) |
123 |
122
|
oveq1d |
⊢ ( 𝑏 = 〈 𝑦 , 𝑧 〉 → ( ( 2nd ‘ 𝑏 ) ↑ 2 ) = ( ( 2nd ‘ 〈 𝑦 , 𝑧 〉 ) ↑ 2 ) ) |
124 |
123
|
oveq2d |
⊢ ( 𝑏 = 〈 𝑦 , 𝑧 〉 → ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) = ( 𝐷 · ( ( 2nd ‘ 〈 𝑦 , 𝑧 〉 ) ↑ 2 ) ) ) |
125 |
121 124
|
oveq12d |
⊢ ( 𝑏 = 〈 𝑦 , 𝑧 〉 → ( ( ( 1st ‘ 𝑏 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) ) = ( ( ( 1st ‘ 〈 𝑦 , 𝑧 〉 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 〈 𝑦 , 𝑧 〉 ) ↑ 2 ) ) ) ) |
126 |
125 19
|
eqtr2di |
⊢ ( 𝑏 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = ( ( ( 1st ‘ 𝑏 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) ) ) |
127 |
126
|
ad2antrl |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) ∧ ( ( ( 1st ‘ 𝑏 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) ) = 𝑥 ) ∧ ( 𝑏 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) → ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = ( ( ( 1st ‘ 𝑏 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) ) ) |
128 |
|
simplr |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) ∧ ( ( ( 1st ‘ 𝑏 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) ) = 𝑥 ) ∧ ( 𝑏 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) → ( ( ( 1st ‘ 𝑏 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) ) = 𝑥 ) |
129 |
127 128
|
eqtrd |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) ∧ ( ( ( 1st ‘ 𝑏 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) ) = 𝑥 ) ∧ ( 𝑏 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) → ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) |
130 |
118 119 129
|
jca32 |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) ∧ ( ( ( 1st ‘ 𝑏 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) ) = 𝑥 ) ∧ ( 𝑏 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) → ( 𝑏 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) ) ) |
131 |
130
|
ex |
⊢ ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) ∧ ( ( ( 1st ‘ 𝑏 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) ) = 𝑥 ) → ( ( 𝑏 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) → ( 𝑏 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) ) ) ) |
132 |
131
|
2eximdv |
⊢ ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) ∧ ( ( ( 1st ‘ 𝑏 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) ) = 𝑥 ) → ( ∃ 𝑦 ∃ 𝑧 ( 𝑏 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) → ∃ 𝑦 ∃ 𝑧 ( 𝑏 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) ) ) ) |
133 |
|
elopab |
⊢ ( 𝑏 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑏 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) |
134 |
|
elopab |
⊢ ( 𝑏 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑏 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) ) ) |
135 |
132 133 134
|
3imtr4g |
⊢ ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) ∧ ( ( ( 1st ‘ 𝑏 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) ) = 𝑥 ) → ( 𝑏 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } → 𝑏 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ) ) |
136 |
135
|
expimpd |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( ( ( ( ( 1st ‘ 𝑏 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) ) = 𝑥 ∧ 𝑏 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ) → 𝑏 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ) ) |
137 |
136
|
ancomsd |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( ( 𝑏 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∧ ( ( ( 1st ‘ 𝑏 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑏 ) ↑ 2 ) ) ) = 𝑥 ) → 𝑏 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ) ) |
138 |
117 137
|
syl5bi |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑏 ∈ { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } → 𝑏 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ) ) |
139 |
138
|
ssrdv |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ⊆ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ) |
140 |
139
|
3adant3 |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ≈ ℕ ) → { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ⊆ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ) |
141 |
|
ssdomg |
⊢ ( { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ∈ V → ( { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ⊆ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } → { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ≼ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ) ) |
142 |
109 140 141
|
mpsyl |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ≈ ℕ ) → { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ≼ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ) |
143 |
|
endomtr |
⊢ ( ( ℕ ≈ { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ∧ { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ≼ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ) → ℕ ≼ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ) |
144 |
108 142 143
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ≈ ℕ ) → ℕ ≼ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ) |
145 |
|
sbth |
⊢ ( ( { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ≼ ℕ ∧ ℕ ≼ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ) → { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ≈ ℕ ) |
146 |
106 144 145
|
sylancr |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ≈ ℕ ) → { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ≈ ℕ ) |
147 |
97 98 146
|
jca32 |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ≈ ℕ ) → ( 𝑥 ∈ ℤ ∧ ( 𝑥 ≠ 0 ∧ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ≈ ℕ ) ) ) |
148 |
147
|
3exp |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) → ( { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ≈ ℕ → ( 𝑥 ∈ ℤ ∧ ( 𝑥 ≠ 0 ∧ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ≈ ℕ ) ) ) ) ) |
149 |
96 148
|
syld |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( 𝑥 ∈ ( ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∖ { 0 } ) → ( { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ≈ ℕ → ( 𝑥 ∈ ℤ ∧ ( 𝑥 ≠ 0 ∧ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ≈ ℕ ) ) ) ) ) |
150 |
149
|
impd |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( ( 𝑥 ∈ ( ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∖ { 0 } ) ∧ { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ≈ ℕ ) → ( 𝑥 ∈ ℤ ∧ ( 𝑥 ≠ 0 ∧ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ≈ ℕ ) ) ) ) |
151 |
150
|
reximdv2 |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( ∃ 𝑥 ∈ ( ( - ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ... ( ⌊ ‘ ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ∖ { 0 } ) { 𝑎 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∣ ( ( ( 1st ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( 2nd ‘ 𝑎 ) ↑ 2 ) ) ) = 𝑥 } ≈ ℕ → ∃ 𝑥 ∈ ℤ ( 𝑥 ≠ 0 ∧ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ≈ ℕ ) ) ) |
152 |
84 151
|
mpd |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ∃ 𝑥 ∈ ℤ ( 𝑥 ≠ 0 ∧ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = 𝑥 ) } ≈ ℕ ) ) |