| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pellex.ann |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
| 2 |
|
pellex.bnn |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
| 3 |
|
pellex.cz |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
| 4 |
|
pellex.dnn |
⊢ ( 𝜑 → 𝐷 ∈ ℕ ) |
| 5 |
|
pellex.irr |
⊢ ( 𝜑 → ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) |
| 6 |
|
pellex.enn |
⊢ ( 𝜑 → 𝐸 ∈ ℕ ) |
| 7 |
|
pellex.fnn |
⊢ ( 𝜑 → 𝐹 ∈ ℕ ) |
| 8 |
|
pellex.neq |
⊢ ( 𝜑 → ¬ ( 𝐴 = 𝐸 ∧ 𝐵 = 𝐹 ) ) |
| 9 |
|
pellex.cn0 |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
| 10 |
|
pellex.no1 |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) = 𝐶 ) |
| 11 |
|
pellex.no2 |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) − ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) = 𝐶 ) |
| 12 |
|
pellex.xcg |
⊢ ( 𝜑 → ( 𝐴 mod ( abs ‘ 𝐶 ) ) = ( 𝐸 mod ( abs ‘ 𝐶 ) ) ) |
| 13 |
|
pellex.ycg |
⊢ ( 𝜑 → ( 𝐵 mod ( abs ‘ 𝐶 ) ) = ( 𝐹 mod ( abs ‘ 𝐶 ) ) ) |
| 14 |
1
|
nncnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 15 |
6
|
nncnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 16 |
14 15
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐸 ) ∈ ℂ ) |
| 17 |
4
|
nncnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 18 |
2
|
nncnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 19 |
7
|
nncnd |
⊢ ( 𝜑 → 𝐹 ∈ ℂ ) |
| 20 |
18 19
|
mulcld |
⊢ ( 𝜑 → ( 𝐵 · 𝐹 ) ∈ ℂ ) |
| 21 |
17 20
|
mulcld |
⊢ ( 𝜑 → ( 𝐷 · ( 𝐵 · 𝐹 ) ) ∈ ℂ ) |
| 22 |
16 21
|
subcld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ∈ ℂ ) |
| 23 |
3
|
zcnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 24 |
22 23 9
|
absdivd |
⊢ ( 𝜑 → ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) = ( ( abs ‘ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) / ( abs ‘ 𝐶 ) ) ) |
| 25 |
16 21
|
negsubd |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐸 ) + - ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) = ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) |
| 26 |
25
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) = ( ( 𝐴 · 𝐸 ) + - ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) |
| 27 |
26
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) mod ( abs ‘ 𝐶 ) ) = ( ( ( 𝐴 · 𝐸 ) + - ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) mod ( abs ‘ 𝐶 ) ) ) |
| 28 |
1
|
nnred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 29 |
6
|
nnred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 30 |
28 29
|
remulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐸 ) ∈ ℝ ) |
| 31 |
4
|
nnred |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 32 |
2
|
nnred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 33 |
7
|
nnred |
⊢ ( 𝜑 → 𝐹 ∈ ℝ ) |
| 34 |
32 33
|
remulcld |
⊢ ( 𝜑 → ( 𝐵 · 𝐹 ) ∈ ℝ ) |
| 35 |
31 34
|
remulcld |
⊢ ( 𝜑 → ( 𝐷 · ( 𝐵 · 𝐹 ) ) ∈ ℝ ) |
| 36 |
35
|
renegcld |
⊢ ( 𝜑 → - ( 𝐷 · ( 𝐵 · 𝐹 ) ) ∈ ℝ ) |
| 37 |
23 9
|
absrpcld |
⊢ ( 𝜑 → ( abs ‘ 𝐶 ) ∈ ℝ+ ) |
| 38 |
6
|
nnzd |
⊢ ( 𝜑 → 𝐸 ∈ ℤ ) |
| 39 |
|
modmul1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐸 ∈ ℝ ) ∧ ( 𝐸 ∈ ℤ ∧ ( abs ‘ 𝐶 ) ∈ ℝ+ ) ∧ ( 𝐴 mod ( abs ‘ 𝐶 ) ) = ( 𝐸 mod ( abs ‘ 𝐶 ) ) ) → ( ( 𝐴 · 𝐸 ) mod ( abs ‘ 𝐶 ) ) = ( ( 𝐸 · 𝐸 ) mod ( abs ‘ 𝐶 ) ) ) |
| 40 |
28 29 38 37 12 39
|
syl221anc |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐸 ) mod ( abs ‘ 𝐶 ) ) = ( ( 𝐸 · 𝐸 ) mod ( abs ‘ 𝐶 ) ) ) |
| 41 |
15
|
sqcld |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℂ ) |
| 42 |
19
|
sqcld |
⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℂ ) |
| 43 |
17 42
|
mulcld |
⊢ ( 𝜑 → ( 𝐷 · ( 𝐹 ↑ 2 ) ) ∈ ℂ ) |
| 44 |
41 43
|
npcand |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) − ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) + ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) = ( 𝐸 ↑ 2 ) ) |
| 45 |
15
|
sqvald |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) = ( 𝐸 · 𝐸 ) ) |
| 46 |
44 45
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐸 · 𝐸 ) = ( ( ( 𝐸 ↑ 2 ) − ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) + ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) |
| 47 |
46
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐸 · 𝐸 ) mod ( abs ‘ 𝐶 ) ) = ( ( ( ( 𝐸 ↑ 2 ) − ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) + ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) mod ( abs ‘ 𝐶 ) ) ) |
| 48 |
29
|
resqcld |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℝ ) |
| 49 |
33
|
resqcld |
⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℝ ) |
| 50 |
31 49
|
remulcld |
⊢ ( 𝜑 → ( 𝐷 · ( 𝐹 ↑ 2 ) ) ∈ ℝ ) |
| 51 |
48 50
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) − ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ∈ ℝ ) |
| 52 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 53 |
23
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝐶 ) ∈ ℝ ) |
| 54 |
53
|
recnd |
⊢ ( 𝜑 → ( abs ‘ 𝐶 ) ∈ ℂ ) |
| 55 |
23 9
|
absne0d |
⊢ ( 𝜑 → ( abs ‘ 𝐶 ) ≠ 0 ) |
| 56 |
54 55
|
dividd |
⊢ ( 𝜑 → ( ( abs ‘ 𝐶 ) / ( abs ‘ 𝐶 ) ) = 1 ) |
| 57 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 58 |
56 57
|
eqeltrd |
⊢ ( 𝜑 → ( ( abs ‘ 𝐶 ) / ( abs ‘ 𝐶 ) ) ∈ ℤ ) |
| 59 |
|
mod0 |
⊢ ( ( ( abs ‘ 𝐶 ) ∈ ℝ ∧ ( abs ‘ 𝐶 ) ∈ ℝ+ ) → ( ( ( abs ‘ 𝐶 ) mod ( abs ‘ 𝐶 ) ) = 0 ↔ ( ( abs ‘ 𝐶 ) / ( abs ‘ 𝐶 ) ) ∈ ℤ ) ) |
| 60 |
53 37 59
|
syl2anc |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐶 ) mod ( abs ‘ 𝐶 ) ) = 0 ↔ ( ( abs ‘ 𝐶 ) / ( abs ‘ 𝐶 ) ) ∈ ℤ ) ) |
| 61 |
58 60
|
mpbird |
⊢ ( 𝜑 → ( ( abs ‘ 𝐶 ) mod ( abs ‘ 𝐶 ) ) = 0 ) |
| 62 |
3
|
zred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 63 |
|
absmod0 |
⊢ ( ( 𝐶 ∈ ℝ ∧ ( abs ‘ 𝐶 ) ∈ ℝ+ ) → ( ( 𝐶 mod ( abs ‘ 𝐶 ) ) = 0 ↔ ( ( abs ‘ 𝐶 ) mod ( abs ‘ 𝐶 ) ) = 0 ) ) |
| 64 |
62 37 63
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐶 mod ( abs ‘ 𝐶 ) ) = 0 ↔ ( ( abs ‘ 𝐶 ) mod ( abs ‘ 𝐶 ) ) = 0 ) ) |
| 65 |
61 64
|
mpbird |
⊢ ( 𝜑 → ( 𝐶 mod ( abs ‘ 𝐶 ) ) = 0 ) |
| 66 |
11
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) − ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) mod ( abs ‘ 𝐶 ) ) = ( 𝐶 mod ( abs ‘ 𝐶 ) ) ) |
| 67 |
|
0mod |
⊢ ( ( abs ‘ 𝐶 ) ∈ ℝ+ → ( 0 mod ( abs ‘ 𝐶 ) ) = 0 ) |
| 68 |
37 67
|
syl |
⊢ ( 𝜑 → ( 0 mod ( abs ‘ 𝐶 ) ) = 0 ) |
| 69 |
65 66 68
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) − ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) mod ( abs ‘ 𝐶 ) ) = ( 0 mod ( abs ‘ 𝐶 ) ) ) |
| 70 |
|
modadd1 |
⊢ ( ( ( ( ( 𝐸 ↑ 2 ) − ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ∈ ℝ ∧ 0 ∈ ℝ ) ∧ ( ( 𝐷 · ( 𝐹 ↑ 2 ) ) ∈ ℝ ∧ ( abs ‘ 𝐶 ) ∈ ℝ+ ) ∧ ( ( ( 𝐸 ↑ 2 ) − ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) mod ( abs ‘ 𝐶 ) ) = ( 0 mod ( abs ‘ 𝐶 ) ) ) → ( ( ( ( 𝐸 ↑ 2 ) − ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) + ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) mod ( abs ‘ 𝐶 ) ) = ( ( 0 + ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) mod ( abs ‘ 𝐶 ) ) ) |
| 71 |
51 52 50 37 69 70
|
syl221anc |
⊢ ( 𝜑 → ( ( ( ( 𝐸 ↑ 2 ) − ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) + ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) mod ( abs ‘ 𝐶 ) ) = ( ( 0 + ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) mod ( abs ‘ 𝐶 ) ) ) |
| 72 |
43
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) = ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) |
| 73 |
19
|
sqvald |
⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) = ( 𝐹 · 𝐹 ) ) |
| 74 |
73
|
oveq2d |
⊢ ( 𝜑 → ( 𝐷 · ( 𝐹 ↑ 2 ) ) = ( 𝐷 · ( 𝐹 · 𝐹 ) ) ) |
| 75 |
17 19 19
|
mul12d |
⊢ ( 𝜑 → ( 𝐷 · ( 𝐹 · 𝐹 ) ) = ( 𝐹 · ( 𝐷 · 𝐹 ) ) ) |
| 76 |
72 74 75
|
3eqtrd |
⊢ ( 𝜑 → ( 0 + ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) = ( 𝐹 · ( 𝐷 · 𝐹 ) ) ) |
| 77 |
76
|
oveq1d |
⊢ ( 𝜑 → ( ( 0 + ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) mod ( abs ‘ 𝐶 ) ) = ( ( 𝐹 · ( 𝐷 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) ) |
| 78 |
47 71 77
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐸 · 𝐸 ) mod ( abs ‘ 𝐶 ) ) = ( ( 𝐹 · ( 𝐷 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) ) |
| 79 |
4
|
nnzd |
⊢ ( 𝜑 → 𝐷 ∈ ℤ ) |
| 80 |
7
|
nnzd |
⊢ ( 𝜑 → 𝐹 ∈ ℤ ) |
| 81 |
79 80
|
zmulcld |
⊢ ( 𝜑 → ( 𝐷 · 𝐹 ) ∈ ℤ ) |
| 82 |
13
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 mod ( abs ‘ 𝐶 ) ) = ( 𝐵 mod ( abs ‘ 𝐶 ) ) ) |
| 83 |
|
modmul1 |
⊢ ( ( ( 𝐹 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐷 · 𝐹 ) ∈ ℤ ∧ ( abs ‘ 𝐶 ) ∈ ℝ+ ) ∧ ( 𝐹 mod ( abs ‘ 𝐶 ) ) = ( 𝐵 mod ( abs ‘ 𝐶 ) ) ) → ( ( 𝐹 · ( 𝐷 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) = ( ( 𝐵 · ( 𝐷 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) ) |
| 84 |
33 32 81 37 82 83
|
syl221anc |
⊢ ( 𝜑 → ( ( 𝐹 · ( 𝐷 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) = ( ( 𝐵 · ( 𝐷 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) ) |
| 85 |
18 17 19
|
mul12d |
⊢ ( 𝜑 → ( 𝐵 · ( 𝐷 · 𝐹 ) ) = ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) |
| 86 |
85
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐵 · ( 𝐷 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) = ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) ) |
| 87 |
84 86
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 · ( 𝐷 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) = ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) ) |
| 88 |
40 78 87
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐸 ) mod ( abs ‘ 𝐶 ) ) = ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) ) |
| 89 |
|
modadd1 |
⊢ ( ( ( ( 𝐴 · 𝐸 ) ∈ ℝ ∧ ( 𝐷 · ( 𝐵 · 𝐹 ) ) ∈ ℝ ) ∧ ( - ( 𝐷 · ( 𝐵 · 𝐹 ) ) ∈ ℝ ∧ ( abs ‘ 𝐶 ) ∈ ℝ+ ) ∧ ( ( 𝐴 · 𝐸 ) mod ( abs ‘ 𝐶 ) ) = ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) ) → ( ( ( 𝐴 · 𝐸 ) + - ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) mod ( abs ‘ 𝐶 ) ) = ( ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) + - ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) mod ( abs ‘ 𝐶 ) ) ) |
| 90 |
30 35 36 37 88 89
|
syl221anc |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐸 ) + - ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) mod ( abs ‘ 𝐶 ) ) = ( ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) + - ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) mod ( abs ‘ 𝐶 ) ) ) |
| 91 |
21
|
negidd |
⊢ ( 𝜑 → ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) + - ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) = 0 ) |
| 92 |
91
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) + - ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) mod ( abs ‘ 𝐶 ) ) = ( 0 mod ( abs ‘ 𝐶 ) ) ) |
| 93 |
27 90 92
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) mod ( abs ‘ 𝐶 ) ) = ( 0 mod ( abs ‘ 𝐶 ) ) ) |
| 94 |
93 68
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) mod ( abs ‘ 𝐶 ) ) = 0 ) |
| 95 |
30 35
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ∈ ℝ ) |
| 96 |
|
absmod0 |
⊢ ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ∈ ℝ ∧ ( abs ‘ 𝐶 ) ∈ ℝ+ ) → ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) mod ( abs ‘ 𝐶 ) ) = 0 ↔ ( ( abs ‘ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) mod ( abs ‘ 𝐶 ) ) = 0 ) ) |
| 97 |
95 37 96
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) mod ( abs ‘ 𝐶 ) ) = 0 ↔ ( ( abs ‘ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) mod ( abs ‘ 𝐶 ) ) = 0 ) ) |
| 98 |
94 97
|
mpbid |
⊢ ( 𝜑 → ( ( abs ‘ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) mod ( abs ‘ 𝐶 ) ) = 0 ) |
| 99 |
22
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) ∈ ℝ ) |
| 100 |
|
mod0 |
⊢ ( ( ( abs ‘ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) ∈ ℝ ∧ ( abs ‘ 𝐶 ) ∈ ℝ+ ) → ( ( ( abs ‘ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) mod ( abs ‘ 𝐶 ) ) = 0 ↔ ( ( abs ‘ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) / ( abs ‘ 𝐶 ) ) ∈ ℤ ) ) |
| 101 |
99 37 100
|
syl2anc |
⊢ ( 𝜑 → ( ( ( abs ‘ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) mod ( abs ‘ 𝐶 ) ) = 0 ↔ ( ( abs ‘ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) / ( abs ‘ 𝐶 ) ) ∈ ℤ ) ) |
| 102 |
98 101
|
mpbid |
⊢ ( 𝜑 → ( ( abs ‘ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) / ( abs ‘ 𝐶 ) ) ∈ ℤ ) |
| 103 |
24 102
|
eqeltrd |
⊢ ( 𝜑 → ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ∈ ℤ ) |
| 104 |
95 62 9
|
redivcld |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ∈ ℝ ) |
| 105 |
|
absz |
⊢ ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ∈ ℝ → ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ∈ ℤ ↔ ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ∈ ℤ ) ) |
| 106 |
104 105
|
syl |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ∈ ℤ ↔ ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ∈ ℤ ) ) |
| 107 |
103 106
|
mpbird |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ∈ ℤ ) |
| 108 |
|
0lt1 |
⊢ 0 < 1 |
| 109 |
|
0re |
⊢ 0 ∈ ℝ |
| 110 |
|
1re |
⊢ 1 ∈ ℝ |
| 111 |
109 110
|
ltnlei |
⊢ ( 0 < 1 ↔ ¬ 1 ≤ 0 ) |
| 112 |
108 111
|
mpbi |
⊢ ¬ 1 ≤ 0 |
| 113 |
18 15
|
mulcld |
⊢ ( 𝜑 → ( 𝐵 · 𝐸 ) ∈ ℂ ) |
| 114 |
14 19
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐹 ) ∈ ℂ ) |
| 115 |
113 114
|
subcld |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ∈ ℂ ) |
| 116 |
115 23 9
|
divcld |
⊢ ( 𝜑 → ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ∈ ℂ ) |
| 117 |
116
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ∈ ℝ ) |
| 118 |
117
|
resqcld |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ∈ ℝ ) |
| 119 |
4
|
nnnn0d |
⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) |
| 120 |
119
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝐷 ) |
| 121 |
117
|
sqge0d |
⊢ ( 𝜑 → 0 ≤ ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) |
| 122 |
31 118 120 121
|
mulge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) ) |
| 123 |
31 118
|
remulcld |
⊢ ( 𝜑 → ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) ∈ ℝ ) |
| 124 |
52 123
|
suble0d |
⊢ ( 𝜑 → ( ( 0 − ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) ) ≤ 0 ↔ 0 ≤ ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) ) ) |
| 125 |
122 124
|
mpbird |
⊢ ( 𝜑 → ( 0 − ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) ) ≤ 0 ) |
| 126 |
|
breq1 |
⊢ ( 1 = ( 0 − ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) ) → ( 1 ≤ 0 ↔ ( 0 − ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) ) ≤ 0 ) ) |
| 127 |
125 126
|
syl5ibrcom |
⊢ ( 𝜑 → ( 1 = ( 0 − ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) ) → 1 ≤ 0 ) ) |
| 128 |
112 127
|
mtoi |
⊢ ( 𝜑 → ¬ 1 = ( 0 − ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) ) ) |
| 129 |
|
absresq |
⊢ ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ∈ ℝ → ( ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ↑ 2 ) = ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ↑ 2 ) ) |
| 130 |
104 129
|
syl |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ↑ 2 ) = ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ↑ 2 ) ) |
| 131 |
22 23 9
|
sqdivd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ↑ 2 ) = ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ↑ 2 ) / ( 𝐶 ↑ 2 ) ) ) |
| 132 |
22
|
sqvald |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ↑ 2 ) = ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) · ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) ) |
| 133 |
132
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ↑ 2 ) / ( 𝐶 ↑ 2 ) ) = ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) · ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) / ( 𝐶 ↑ 2 ) ) ) |
| 134 |
130 131 133
|
3eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ↑ 2 ) = ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) · ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) / ( 𝐶 ↑ 2 ) ) ) |
| 135 |
32 29
|
remulcld |
⊢ ( 𝜑 → ( 𝐵 · 𝐸 ) ∈ ℝ ) |
| 136 |
28 33
|
remulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐹 ) ∈ ℝ ) |
| 137 |
135 136
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ∈ ℝ ) |
| 138 |
137 62 9
|
redivcld |
⊢ ( 𝜑 → ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ∈ ℝ ) |
| 139 |
|
absresq |
⊢ ( ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ∈ ℝ → ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) = ( ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ↑ 2 ) ) |
| 140 |
138 139
|
syl |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) = ( ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ↑ 2 ) ) |
| 141 |
115 23 9
|
sqdivd |
⊢ ( 𝜑 → ( ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ↑ 2 ) = ( ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ↑ 2 ) / ( 𝐶 ↑ 2 ) ) ) |
| 142 |
140 141
|
eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) = ( ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ↑ 2 ) / ( 𝐶 ↑ 2 ) ) ) |
| 143 |
142
|
oveq2d |
⊢ ( 𝜑 → ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) = ( 𝐷 · ( ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ↑ 2 ) / ( 𝐶 ↑ 2 ) ) ) ) |
| 144 |
115
|
sqcld |
⊢ ( 𝜑 → ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ↑ 2 ) ∈ ℂ ) |
| 145 |
23
|
sqcld |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℂ ) |
| 146 |
|
sqne0 |
⊢ ( 𝐶 ∈ ℂ → ( ( 𝐶 ↑ 2 ) ≠ 0 ↔ 𝐶 ≠ 0 ) ) |
| 147 |
23 146
|
syl |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) ≠ 0 ↔ 𝐶 ≠ 0 ) ) |
| 148 |
9 147
|
mpbird |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ≠ 0 ) |
| 149 |
17 144 145 148
|
divassd |
⊢ ( 𝜑 → ( ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ↑ 2 ) ) / ( 𝐶 ↑ 2 ) ) = ( 𝐷 · ( ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ↑ 2 ) / ( 𝐶 ↑ 2 ) ) ) ) |
| 150 |
115
|
sqvald |
⊢ ( 𝜑 → ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ↑ 2 ) = ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) · ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) ) |
| 151 |
150
|
oveq2d |
⊢ ( 𝜑 → ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ↑ 2 ) ) = ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) · ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) ) ) |
| 152 |
151
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ↑ 2 ) ) / ( 𝐶 ↑ 2 ) ) = ( ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) · ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) ) / ( 𝐶 ↑ 2 ) ) ) |
| 153 |
143 149 152
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) = ( ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) · ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) ) / ( 𝐶 ↑ 2 ) ) ) |
| 154 |
134 153
|
oveq12d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ↑ 2 ) − ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) ) = ( ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) · ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) / ( 𝐶 ↑ 2 ) ) − ( ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) · ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) ) / ( 𝐶 ↑ 2 ) ) ) ) |
| 155 |
22 22
|
mulcld |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) · ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) ∈ ℂ ) |
| 156 |
115 115
|
mulcld |
⊢ ( 𝜑 → ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) · ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) ∈ ℂ ) |
| 157 |
17 156
|
mulcld |
⊢ ( 𝜑 → ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) · ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) ) ∈ ℂ ) |
| 158 |
155 157 145 148
|
divsubdird |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) · ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) − ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) · ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) ) ) / ( 𝐶 ↑ 2 ) ) = ( ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) · ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) / ( 𝐶 ↑ 2 ) ) − ( ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) · ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) ) / ( 𝐶 ↑ 2 ) ) ) ) |
| 159 |
16 21 16 21
|
mulsubd |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) · ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) = ( ( ( ( 𝐴 · 𝐸 ) · ( 𝐴 · 𝐸 ) ) + ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) − ( ( ( 𝐴 · 𝐸 ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) + ( ( 𝐴 · 𝐸 ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) ) ) |
| 160 |
113 114 113 114
|
mulsubd |
⊢ ( 𝜑 → ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) · ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) = ( ( ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) + ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) − ( ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) + ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ) |
| 161 |
160
|
oveq2d |
⊢ ( 𝜑 → ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) · ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) ) = ( 𝐷 · ( ( ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) + ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) − ( ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) + ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ) ) |
| 162 |
113 113
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ∈ ℂ ) |
| 163 |
114 114
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ∈ ℂ ) |
| 164 |
162 163
|
addcld |
⊢ ( 𝜑 → ( ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) + ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ∈ ℂ ) |
| 165 |
113 114
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ∈ ℂ ) |
| 166 |
165 165
|
addcld |
⊢ ( 𝜑 → ( ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) + ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ∈ ℂ ) |
| 167 |
17 164 166
|
subdid |
⊢ ( 𝜑 → ( 𝐷 · ( ( ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) + ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) − ( ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) + ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ) = ( ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) + ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) − ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) + ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ) ) |
| 168 |
17 162 163
|
adddid |
⊢ ( 𝜑 → ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) + ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) = ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) + ( 𝐷 · ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) ) |
| 169 |
17 165 165
|
adddid |
⊢ ( 𝜑 → ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) + ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) = ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) + ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ) |
| 170 |
168 169
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) + ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) − ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) + ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ) = ( ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) + ( 𝐷 · ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) − ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) + ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ) ) |
| 171 |
161 167 170
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) · ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) ) = ( ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) + ( 𝐷 · ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) − ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) + ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ) ) |
| 172 |
159 171
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) · ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) − ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) · ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) ) ) = ( ( ( ( ( 𝐴 · 𝐸 ) · ( 𝐴 · 𝐸 ) ) + ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) − ( ( ( 𝐴 · 𝐸 ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) + ( ( 𝐴 · 𝐸 ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) ) − ( ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) + ( 𝐷 · ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) − ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) + ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ) ) ) |
| 173 |
172
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) · ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) − ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) · ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) ) ) / ( 𝐶 ↑ 2 ) ) = ( ( ( ( ( ( 𝐴 · 𝐸 ) · ( 𝐴 · 𝐸 ) ) + ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) − ( ( ( 𝐴 · 𝐸 ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) + ( ( 𝐴 · 𝐸 ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) ) − ( ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) + ( 𝐷 · ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) − ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) + ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ) ) / ( 𝐶 ↑ 2 ) ) ) |
| 174 |
16 21
|
mulcomd |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐸 ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) = ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐴 · 𝐸 ) ) ) |
| 175 |
17 20 16
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐴 · 𝐸 ) ) = ( 𝐷 · ( ( 𝐵 · 𝐹 ) · ( 𝐴 · 𝐸 ) ) ) ) |
| 176 |
14 15
|
mulcomd |
⊢ ( 𝜑 → ( 𝐴 · 𝐸 ) = ( 𝐸 · 𝐴 ) ) |
| 177 |
176
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐹 ) · ( 𝐴 · 𝐸 ) ) = ( ( 𝐵 · 𝐹 ) · ( 𝐸 · 𝐴 ) ) ) |
| 178 |
18 19 15 14
|
mul4d |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐹 ) · ( 𝐸 · 𝐴 ) ) = ( ( 𝐵 · 𝐸 ) · ( 𝐹 · 𝐴 ) ) ) |
| 179 |
19 14
|
mulcomd |
⊢ ( 𝜑 → ( 𝐹 · 𝐴 ) = ( 𝐴 · 𝐹 ) ) |
| 180 |
179
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐸 ) · ( 𝐹 · 𝐴 ) ) = ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) |
| 181 |
177 178 180
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐹 ) · ( 𝐴 · 𝐸 ) ) = ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) |
| 182 |
181
|
oveq2d |
⊢ ( 𝜑 → ( 𝐷 · ( ( 𝐵 · 𝐹 ) · ( 𝐴 · 𝐸 ) ) ) = ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) |
| 183 |
174 175 182
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐸 ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) = ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) |
| 184 |
183 183
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐸 ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) + ( ( 𝐴 · 𝐸 ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) = ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) + ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ) |
| 185 |
184
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · 𝐸 ) · ( 𝐴 · 𝐸 ) ) + ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) − ( ( ( 𝐴 · 𝐸 ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) + ( ( 𝐴 · 𝐸 ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) ) = ( ( ( ( 𝐴 · 𝐸 ) · ( 𝐴 · 𝐸 ) ) + ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) − ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) + ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ) ) |
| 186 |
185
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · 𝐸 ) · ( 𝐴 · 𝐸 ) ) + ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) − ( ( ( 𝐴 · 𝐸 ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) + ( ( 𝐴 · 𝐸 ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) ) − ( ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) + ( 𝐷 · ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) − ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) + ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ) ) = ( ( ( ( ( 𝐴 · 𝐸 ) · ( 𝐴 · 𝐸 ) ) + ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) − ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) + ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ) − ( ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) + ( 𝐷 · ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) − ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) + ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ) ) ) |
| 187 |
16 16
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐸 ) · ( 𝐴 · 𝐸 ) ) ∈ ℂ ) |
| 188 |
21 21
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ∈ ℂ ) |
| 189 |
187 188
|
addcld |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐸 ) · ( 𝐴 · 𝐸 ) ) + ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) ∈ ℂ ) |
| 190 |
17 162
|
mulcld |
⊢ ( 𝜑 → ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) ∈ ℂ ) |
| 191 |
17 163
|
mulcld |
⊢ ( 𝜑 → ( 𝐷 · ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ∈ ℂ ) |
| 192 |
190 191
|
addcld |
⊢ ( 𝜑 → ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) + ( 𝐷 · ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) ∈ ℂ ) |
| 193 |
17 165
|
mulcld |
⊢ ( 𝜑 → ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ∈ ℂ ) |
| 194 |
193 193
|
addcld |
⊢ ( 𝜑 → ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) + ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ∈ ℂ ) |
| 195 |
189 192 194
|
nnncan2d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · 𝐸 ) · ( 𝐴 · 𝐸 ) ) + ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) − ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) + ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ) − ( ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) + ( 𝐷 · ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) − ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) + ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ) ) = ( ( ( ( 𝐴 · 𝐸 ) · ( 𝐴 · 𝐸 ) ) + ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) − ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) + ( 𝐷 · ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) ) ) |
| 196 |
187 188 190 191
|
addsub4d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · 𝐸 ) · ( 𝐴 · 𝐸 ) ) + ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) − ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) + ( 𝐷 · ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) ) = ( ( ( ( 𝐴 · 𝐸 ) · ( 𝐴 · 𝐸 ) ) − ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) ) + ( ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) − ( 𝐷 · ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) ) ) |
| 197 |
16
|
sqvald |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐸 ) ↑ 2 ) = ( ( 𝐴 · 𝐸 ) · ( 𝐴 · 𝐸 ) ) ) |
| 198 |
113
|
sqvald |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐸 ) ↑ 2 ) = ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) |
| 199 |
198
|
oveq2d |
⊢ ( 𝜑 → ( 𝐷 · ( ( 𝐵 · 𝐸 ) ↑ 2 ) ) = ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) ) |
| 200 |
197 199
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐸 ) ↑ 2 ) − ( 𝐷 · ( ( 𝐵 · 𝐸 ) ↑ 2 ) ) ) = ( ( ( 𝐴 · 𝐸 ) · ( 𝐴 · 𝐸 ) ) − ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) ) ) |
| 201 |
21
|
sqvald |
⊢ ( 𝜑 → ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) ↑ 2 ) = ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) |
| 202 |
114
|
sqvald |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐹 ) ↑ 2 ) = ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) |
| 203 |
202
|
oveq2d |
⊢ ( 𝜑 → ( 𝐷 · ( ( 𝐴 · 𝐹 ) ↑ 2 ) ) = ( 𝐷 · ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) |
| 204 |
201 203
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) ↑ 2 ) − ( 𝐷 · ( ( 𝐴 · 𝐹 ) ↑ 2 ) ) ) = ( ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) − ( 𝐷 · ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) ) |
| 205 |
200 204
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · 𝐸 ) ↑ 2 ) − ( 𝐷 · ( ( 𝐵 · 𝐸 ) ↑ 2 ) ) ) + ( ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) ↑ 2 ) − ( 𝐷 · ( ( 𝐴 · 𝐹 ) ↑ 2 ) ) ) ) = ( ( ( ( 𝐴 · 𝐸 ) · ( 𝐴 · 𝐸 ) ) − ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) ) + ( ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) − ( 𝐷 · ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) ) ) |
| 206 |
14 15
|
sqmuld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐸 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) · ( 𝐸 ↑ 2 ) ) ) |
| 207 |
18 15
|
sqmuld |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐸 ) ↑ 2 ) = ( ( 𝐵 ↑ 2 ) · ( 𝐸 ↑ 2 ) ) ) |
| 208 |
207
|
oveq2d |
⊢ ( 𝜑 → ( 𝐷 · ( ( 𝐵 · 𝐸 ) ↑ 2 ) ) = ( 𝐷 · ( ( 𝐵 ↑ 2 ) · ( 𝐸 ↑ 2 ) ) ) ) |
| 209 |
18
|
sqcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 210 |
17 209 41
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐷 · ( 𝐵 ↑ 2 ) ) · ( 𝐸 ↑ 2 ) ) = ( 𝐷 · ( ( 𝐵 ↑ 2 ) · ( 𝐸 ↑ 2 ) ) ) ) |
| 211 |
208 210
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐷 · ( ( 𝐵 · 𝐸 ) ↑ 2 ) ) = ( ( 𝐷 · ( 𝐵 ↑ 2 ) ) · ( 𝐸 ↑ 2 ) ) ) |
| 212 |
206 211
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐸 ) ↑ 2 ) − ( 𝐷 · ( ( 𝐵 · 𝐸 ) ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 𝐸 ↑ 2 ) ) − ( ( 𝐷 · ( 𝐵 ↑ 2 ) ) · ( 𝐸 ↑ 2 ) ) ) ) |
| 213 |
17
|
sqvald |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) = ( 𝐷 · 𝐷 ) ) |
| 214 |
18 19
|
sqmuld |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐹 ) ↑ 2 ) = ( ( 𝐵 ↑ 2 ) · ( 𝐹 ↑ 2 ) ) ) |
| 215 |
213 214
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) · ( ( 𝐵 · 𝐹 ) ↑ 2 ) ) = ( ( 𝐷 · 𝐷 ) · ( ( 𝐵 ↑ 2 ) · ( 𝐹 ↑ 2 ) ) ) ) |
| 216 |
17 20
|
sqmuld |
⊢ ( 𝜑 → ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) ↑ 2 ) = ( ( 𝐷 ↑ 2 ) · ( ( 𝐵 · 𝐹 ) ↑ 2 ) ) ) |
| 217 |
17 17
|
mulcld |
⊢ ( 𝜑 → ( 𝐷 · 𝐷 ) ∈ ℂ ) |
| 218 |
217 209 42
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐷 · 𝐷 ) · ( 𝐵 ↑ 2 ) ) · ( 𝐹 ↑ 2 ) ) = ( ( 𝐷 · 𝐷 ) · ( ( 𝐵 ↑ 2 ) · ( 𝐹 ↑ 2 ) ) ) ) |
| 219 |
215 216 218
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) ↑ 2 ) = ( ( ( 𝐷 · 𝐷 ) · ( 𝐵 ↑ 2 ) ) · ( 𝐹 ↑ 2 ) ) ) |
| 220 |
14 19
|
sqmuld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐹 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) · ( 𝐹 ↑ 2 ) ) ) |
| 221 |
220
|
oveq2d |
⊢ ( 𝜑 → ( 𝐷 · ( ( 𝐴 · 𝐹 ) ↑ 2 ) ) = ( 𝐷 · ( ( 𝐴 ↑ 2 ) · ( 𝐹 ↑ 2 ) ) ) ) |
| 222 |
14
|
sqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 223 |
17 222 42
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐷 · ( 𝐴 ↑ 2 ) ) · ( 𝐹 ↑ 2 ) ) = ( 𝐷 · ( ( 𝐴 ↑ 2 ) · ( 𝐹 ↑ 2 ) ) ) ) |
| 224 |
221 223
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐷 · ( ( 𝐴 · 𝐹 ) ↑ 2 ) ) = ( ( 𝐷 · ( 𝐴 ↑ 2 ) ) · ( 𝐹 ↑ 2 ) ) ) |
| 225 |
219 224
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) ↑ 2 ) − ( 𝐷 · ( ( 𝐴 · 𝐹 ) ↑ 2 ) ) ) = ( ( ( ( 𝐷 · 𝐷 ) · ( 𝐵 ↑ 2 ) ) · ( 𝐹 ↑ 2 ) ) − ( ( 𝐷 · ( 𝐴 ↑ 2 ) ) · ( 𝐹 ↑ 2 ) ) ) ) |
| 226 |
212 225
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · 𝐸 ) ↑ 2 ) − ( 𝐷 · ( ( 𝐵 · 𝐸 ) ↑ 2 ) ) ) + ( ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) ↑ 2 ) − ( 𝐷 · ( ( 𝐴 · 𝐹 ) ↑ 2 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) · ( 𝐸 ↑ 2 ) ) − ( ( 𝐷 · ( 𝐵 ↑ 2 ) ) · ( 𝐸 ↑ 2 ) ) ) + ( ( ( ( 𝐷 · 𝐷 ) · ( 𝐵 ↑ 2 ) ) · ( 𝐹 ↑ 2 ) ) − ( ( 𝐷 · ( 𝐴 ↑ 2 ) ) · ( 𝐹 ↑ 2 ) ) ) ) ) |
| 227 |
17 209
|
mulcld |
⊢ ( 𝜑 → ( 𝐷 · ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
| 228 |
222 227 41
|
subdird |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) · ( 𝐸 ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 𝐸 ↑ 2 ) ) − ( ( 𝐷 · ( 𝐵 ↑ 2 ) ) · ( 𝐸 ↑ 2 ) ) ) ) |
| 229 |
10
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) · ( 𝐸 ↑ 2 ) ) = ( 𝐶 · ( 𝐸 ↑ 2 ) ) ) |
| 230 |
228 229
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · ( 𝐸 ↑ 2 ) ) − ( ( 𝐷 · ( 𝐵 ↑ 2 ) ) · ( 𝐸 ↑ 2 ) ) ) = ( 𝐶 · ( 𝐸 ↑ 2 ) ) ) |
| 231 |
17 17 209
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐷 · 𝐷 ) · ( 𝐵 ↑ 2 ) ) = ( 𝐷 · ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) ) |
| 232 |
231
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐷 · 𝐷 ) · ( 𝐵 ↑ 2 ) ) − ( 𝐷 · ( 𝐴 ↑ 2 ) ) ) = ( ( 𝐷 · ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) − ( 𝐷 · ( 𝐴 ↑ 2 ) ) ) ) |
| 233 |
232
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐷 · 𝐷 ) · ( 𝐵 ↑ 2 ) ) − ( 𝐷 · ( 𝐴 ↑ 2 ) ) ) · ( 𝐹 ↑ 2 ) ) = ( ( ( 𝐷 · ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) − ( 𝐷 · ( 𝐴 ↑ 2 ) ) ) · ( 𝐹 ↑ 2 ) ) ) |
| 234 |
217 209
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐷 · 𝐷 ) · ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
| 235 |
17 222
|
mulcld |
⊢ ( 𝜑 → ( 𝐷 · ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 236 |
234 235 42
|
subdird |
⊢ ( 𝜑 → ( ( ( ( 𝐷 · 𝐷 ) · ( 𝐵 ↑ 2 ) ) − ( 𝐷 · ( 𝐴 ↑ 2 ) ) ) · ( 𝐹 ↑ 2 ) ) = ( ( ( ( 𝐷 · 𝐷 ) · ( 𝐵 ↑ 2 ) ) · ( 𝐹 ↑ 2 ) ) − ( ( 𝐷 · ( 𝐴 ↑ 2 ) ) · ( 𝐹 ↑ 2 ) ) ) ) |
| 237 |
|
subdi |
⊢ ( ( 𝐷 ∈ ℂ ∧ ( 𝐷 · ( 𝐵 ↑ 2 ) ) ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 𝐷 · ( ( 𝐷 · ( 𝐵 ↑ 2 ) ) − ( 𝐴 ↑ 2 ) ) ) = ( ( 𝐷 · ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) − ( 𝐷 · ( 𝐴 ↑ 2 ) ) ) ) |
| 238 |
237
|
eqcomd |
⊢ ( ( 𝐷 ∈ ℂ ∧ ( 𝐷 · ( 𝐵 ↑ 2 ) ) ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( ( 𝐷 · ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) − ( 𝐷 · ( 𝐴 ↑ 2 ) ) ) = ( 𝐷 · ( ( 𝐷 · ( 𝐵 ↑ 2 ) ) − ( 𝐴 ↑ 2 ) ) ) ) |
| 239 |
17 227 222 238
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐷 · ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) − ( 𝐷 · ( 𝐴 ↑ 2 ) ) ) = ( 𝐷 · ( ( 𝐷 · ( 𝐵 ↑ 2 ) ) − ( 𝐴 ↑ 2 ) ) ) ) |
| 240 |
|
negsubdi2 |
⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℂ ∧ ( 𝐷 · ( 𝐵 ↑ 2 ) ) ∈ ℂ ) → - ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) = ( ( 𝐷 · ( 𝐵 ↑ 2 ) ) − ( 𝐴 ↑ 2 ) ) ) |
| 241 |
240
|
eqcomd |
⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℂ ∧ ( 𝐷 · ( 𝐵 ↑ 2 ) ) ∈ ℂ ) → ( ( 𝐷 · ( 𝐵 ↑ 2 ) ) − ( 𝐴 ↑ 2 ) ) = - ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) ) |
| 242 |
222 227 241
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐷 · ( 𝐵 ↑ 2 ) ) − ( 𝐴 ↑ 2 ) ) = - ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) ) |
| 243 |
10
|
negeqd |
⊢ ( 𝜑 → - ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) = - 𝐶 ) |
| 244 |
242 243
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐷 · ( 𝐵 ↑ 2 ) ) − ( 𝐴 ↑ 2 ) ) = - 𝐶 ) |
| 245 |
244
|
oveq2d |
⊢ ( 𝜑 → ( 𝐷 · ( ( 𝐷 · ( 𝐵 ↑ 2 ) ) − ( 𝐴 ↑ 2 ) ) ) = ( 𝐷 · - 𝐶 ) ) |
| 246 |
17 23
|
mulneg2d |
⊢ ( 𝜑 → ( 𝐷 · - 𝐶 ) = - ( 𝐷 · 𝐶 ) ) |
| 247 |
239 245 246
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐷 · ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) − ( 𝐷 · ( 𝐴 ↑ 2 ) ) ) = - ( 𝐷 · 𝐶 ) ) |
| 248 |
247
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐷 · ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) − ( 𝐷 · ( 𝐴 ↑ 2 ) ) ) · ( 𝐹 ↑ 2 ) ) = ( - ( 𝐷 · 𝐶 ) · ( 𝐹 ↑ 2 ) ) ) |
| 249 |
233 236 248
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( ( 𝐷 · 𝐷 ) · ( 𝐵 ↑ 2 ) ) · ( 𝐹 ↑ 2 ) ) − ( ( 𝐷 · ( 𝐴 ↑ 2 ) ) · ( 𝐹 ↑ 2 ) ) ) = ( - ( 𝐷 · 𝐶 ) · ( 𝐹 ↑ 2 ) ) ) |
| 250 |
230 249
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · ( 𝐸 ↑ 2 ) ) − ( ( 𝐷 · ( 𝐵 ↑ 2 ) ) · ( 𝐸 ↑ 2 ) ) ) + ( ( ( ( 𝐷 · 𝐷 ) · ( 𝐵 ↑ 2 ) ) · ( 𝐹 ↑ 2 ) ) − ( ( 𝐷 · ( 𝐴 ↑ 2 ) ) · ( 𝐹 ↑ 2 ) ) ) ) = ( ( 𝐶 · ( 𝐸 ↑ 2 ) ) + ( - ( 𝐷 · 𝐶 ) · ( 𝐹 ↑ 2 ) ) ) ) |
| 251 |
17 23
|
mulcld |
⊢ ( 𝜑 → ( 𝐷 · 𝐶 ) ∈ ℂ ) |
| 252 |
251 42
|
mulneg1d |
⊢ ( 𝜑 → ( - ( 𝐷 · 𝐶 ) · ( 𝐹 ↑ 2 ) ) = - ( ( 𝐷 · 𝐶 ) · ( 𝐹 ↑ 2 ) ) ) |
| 253 |
17 23
|
mulcomd |
⊢ ( 𝜑 → ( 𝐷 · 𝐶 ) = ( 𝐶 · 𝐷 ) ) |
| 254 |
253
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐷 · 𝐶 ) · ( 𝐹 ↑ 2 ) ) = ( ( 𝐶 · 𝐷 ) · ( 𝐹 ↑ 2 ) ) ) |
| 255 |
23 17 42
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐷 ) · ( 𝐹 ↑ 2 ) ) = ( 𝐶 · ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) |
| 256 |
254 255
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐷 · 𝐶 ) · ( 𝐹 ↑ 2 ) ) = ( 𝐶 · ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) |
| 257 |
256
|
negeqd |
⊢ ( 𝜑 → - ( ( 𝐷 · 𝐶 ) · ( 𝐹 ↑ 2 ) ) = - ( 𝐶 · ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) |
| 258 |
252 257
|
eqtrd |
⊢ ( 𝜑 → ( - ( 𝐷 · 𝐶 ) · ( 𝐹 ↑ 2 ) ) = - ( 𝐶 · ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) |
| 259 |
258
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐶 · ( 𝐸 ↑ 2 ) ) + ( - ( 𝐷 · 𝐶 ) · ( 𝐹 ↑ 2 ) ) ) = ( ( 𝐶 · ( 𝐸 ↑ 2 ) ) + - ( 𝐶 · ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) ) |
| 260 |
23 41
|
mulcld |
⊢ ( 𝜑 → ( 𝐶 · ( 𝐸 ↑ 2 ) ) ∈ ℂ ) |
| 261 |
23 43
|
mulcld |
⊢ ( 𝜑 → ( 𝐶 · ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ∈ ℂ ) |
| 262 |
260 261
|
negsubd |
⊢ ( 𝜑 → ( ( 𝐶 · ( 𝐸 ↑ 2 ) ) + - ( 𝐶 · ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) = ( ( 𝐶 · ( 𝐸 ↑ 2 ) ) − ( 𝐶 · ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) ) |
| 263 |
11
|
oveq2d |
⊢ ( 𝜑 → ( 𝐶 · ( ( 𝐸 ↑ 2 ) − ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) = ( 𝐶 · 𝐶 ) ) |
| 264 |
|
subdi |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐸 ↑ 2 ) ∈ ℂ ∧ ( 𝐷 · ( 𝐹 ↑ 2 ) ) ∈ ℂ ) → ( 𝐶 · ( ( 𝐸 ↑ 2 ) − ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) = ( ( 𝐶 · ( 𝐸 ↑ 2 ) ) − ( 𝐶 · ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) ) |
| 265 |
264
|
eqcomd |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐸 ↑ 2 ) ∈ ℂ ∧ ( 𝐷 · ( 𝐹 ↑ 2 ) ) ∈ ℂ ) → ( ( 𝐶 · ( 𝐸 ↑ 2 ) ) − ( 𝐶 · ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) = ( 𝐶 · ( ( 𝐸 ↑ 2 ) − ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) ) |
| 266 |
23 41 43 265
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐶 · ( 𝐸 ↑ 2 ) ) − ( 𝐶 · ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) = ( 𝐶 · ( ( 𝐸 ↑ 2 ) − ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) ) |
| 267 |
23
|
sqvald |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) = ( 𝐶 · 𝐶 ) ) |
| 268 |
263 266 267
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐶 · ( 𝐸 ↑ 2 ) ) − ( 𝐶 · ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) = ( 𝐶 ↑ 2 ) ) |
| 269 |
259 262 268
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐶 · ( 𝐸 ↑ 2 ) ) + ( - ( 𝐷 · 𝐶 ) · ( 𝐹 ↑ 2 ) ) ) = ( 𝐶 ↑ 2 ) ) |
| 270 |
226 250 269
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · 𝐸 ) ↑ 2 ) − ( 𝐷 · ( ( 𝐵 · 𝐸 ) ↑ 2 ) ) ) + ( ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) ↑ 2 ) − ( 𝐷 · ( ( 𝐴 · 𝐹 ) ↑ 2 ) ) ) ) = ( 𝐶 ↑ 2 ) ) |
| 271 |
196 205 270
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · 𝐸 ) · ( 𝐴 · 𝐸 ) ) + ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) − ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) + ( 𝐷 · ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) ) = ( 𝐶 ↑ 2 ) ) |
| 272 |
186 195 271
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · 𝐸 ) · ( 𝐴 · 𝐸 ) ) + ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) − ( ( ( 𝐴 · 𝐸 ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) + ( ( 𝐴 · 𝐸 ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) ) − ( ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) + ( 𝐷 · ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) − ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) + ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ) ) = ( 𝐶 ↑ 2 ) ) |
| 273 |
272
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( ( 𝐴 · 𝐸 ) · ( 𝐴 · 𝐸 ) ) + ( ( 𝐷 · ( 𝐵 · 𝐹 ) ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) − ( ( ( 𝐴 · 𝐸 ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) + ( ( 𝐴 · 𝐸 ) · ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) ) − ( ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐵 · 𝐸 ) ) ) + ( 𝐷 · ( ( 𝐴 · 𝐹 ) · ( 𝐴 · 𝐹 ) ) ) ) − ( ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) + ( 𝐷 · ( ( 𝐵 · 𝐸 ) · ( 𝐴 · 𝐹 ) ) ) ) ) ) / ( 𝐶 ↑ 2 ) ) = ( ( 𝐶 ↑ 2 ) / ( 𝐶 ↑ 2 ) ) ) |
| 274 |
145 148
|
dividd |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) / ( 𝐶 ↑ 2 ) ) = 1 ) |
| 275 |
173 273 274
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) · ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ) − ( 𝐷 · ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) · ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) ) ) / ( 𝐶 ↑ 2 ) ) = 1 ) |
| 276 |
154 158 275
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ↑ 2 ) − ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) ) = 1 ) |
| 277 |
276
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) = 0 ) → ( ( ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ↑ 2 ) − ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) ) = 1 ) |
| 278 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) = 0 ) → ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) = 0 ) |
| 279 |
278
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) = 0 ) → ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) = ( abs ‘ ( 0 / 𝐶 ) ) ) |
| 280 |
23 9
|
div0d |
⊢ ( 𝜑 → ( 0 / 𝐶 ) = 0 ) |
| 281 |
280
|
abs00bd |
⊢ ( 𝜑 → ( abs ‘ ( 0 / 𝐶 ) ) = 0 ) |
| 282 |
281
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) = 0 ) → ( abs ‘ ( 0 / 𝐶 ) ) = 0 ) |
| 283 |
279 282
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) = 0 ) → ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) = 0 ) |
| 284 |
283
|
sq0id |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) = 0 ) → ( ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ↑ 2 ) = 0 ) |
| 285 |
284
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) = 0 ) → ( ( ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ↑ 2 ) − ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) ) = ( 0 − ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) ) ) |
| 286 |
277 285
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) = 0 ) → 1 = ( 0 − ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) ) ) |
| 287 |
128 286
|
mtand |
⊢ ( 𝜑 → ¬ ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) = 0 ) |
| 288 |
287
|
neqned |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) ≠ 0 ) |
| 289 |
22 23 288 9
|
divne0d |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ≠ 0 ) |
| 290 |
|
nnabscl |
⊢ ( ( ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ∈ ℤ ∧ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ≠ 0 ) → ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ∈ ℕ ) |
| 291 |
107 289 290
|
syl2anc |
⊢ ( 𝜑 → ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ∈ ℕ ) |
| 292 |
115 23 9
|
absdivd |
⊢ ( 𝜑 → ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) = ( ( abs ‘ ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) / ( abs ‘ 𝐶 ) ) ) |
| 293 |
|
negsub |
⊢ ( ( ( 𝐵 · 𝐸 ) ∈ ℂ ∧ ( 𝐴 · 𝐹 ) ∈ ℂ ) → ( ( 𝐵 · 𝐸 ) + - ( 𝐴 · 𝐹 ) ) = ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) |
| 294 |
293
|
eqcomd |
⊢ ( ( ( 𝐵 · 𝐸 ) ∈ ℂ ∧ ( 𝐴 · 𝐹 ) ∈ ℂ ) → ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) = ( ( 𝐵 · 𝐸 ) + - ( 𝐴 · 𝐹 ) ) ) |
| 295 |
113 114 294
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) = ( ( 𝐵 · 𝐸 ) + - ( 𝐴 · 𝐹 ) ) ) |
| 296 |
295
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) = ( ( ( 𝐵 · 𝐸 ) + - ( 𝐴 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) ) |
| 297 |
136
|
renegcld |
⊢ ( 𝜑 → - ( 𝐴 · 𝐹 ) ∈ ℝ ) |
| 298 |
19 15
|
mulcomd |
⊢ ( 𝜑 → ( 𝐹 · 𝐸 ) = ( 𝐸 · 𝐹 ) ) |
| 299 |
298
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐹 · 𝐸 ) mod ( abs ‘ 𝐶 ) ) = ( ( 𝐸 · 𝐹 ) mod ( abs ‘ 𝐶 ) ) ) |
| 300 |
|
modmul1 |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐹 ∈ ℝ ) ∧ ( 𝐸 ∈ ℤ ∧ ( abs ‘ 𝐶 ) ∈ ℝ+ ) ∧ ( 𝐵 mod ( abs ‘ 𝐶 ) ) = ( 𝐹 mod ( abs ‘ 𝐶 ) ) ) → ( ( 𝐵 · 𝐸 ) mod ( abs ‘ 𝐶 ) ) = ( ( 𝐹 · 𝐸 ) mod ( abs ‘ 𝐶 ) ) ) |
| 301 |
32 33 38 37 13 300
|
syl221anc |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐸 ) mod ( abs ‘ 𝐶 ) ) = ( ( 𝐹 · 𝐸 ) mod ( abs ‘ 𝐶 ) ) ) |
| 302 |
|
modmul1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐸 ∈ ℝ ) ∧ ( 𝐹 ∈ ℤ ∧ ( abs ‘ 𝐶 ) ∈ ℝ+ ) ∧ ( 𝐴 mod ( abs ‘ 𝐶 ) ) = ( 𝐸 mod ( abs ‘ 𝐶 ) ) ) → ( ( 𝐴 · 𝐹 ) mod ( abs ‘ 𝐶 ) ) = ( ( 𝐸 · 𝐹 ) mod ( abs ‘ 𝐶 ) ) ) |
| 303 |
28 29 80 37 12 302
|
syl221anc |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐹 ) mod ( abs ‘ 𝐶 ) ) = ( ( 𝐸 · 𝐹 ) mod ( abs ‘ 𝐶 ) ) ) |
| 304 |
299 301 303
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐸 ) mod ( abs ‘ 𝐶 ) ) = ( ( 𝐴 · 𝐹 ) mod ( abs ‘ 𝐶 ) ) ) |
| 305 |
|
modadd1 |
⊢ ( ( ( ( 𝐵 · 𝐸 ) ∈ ℝ ∧ ( 𝐴 · 𝐹 ) ∈ ℝ ) ∧ ( - ( 𝐴 · 𝐹 ) ∈ ℝ ∧ ( abs ‘ 𝐶 ) ∈ ℝ+ ) ∧ ( ( 𝐵 · 𝐸 ) mod ( abs ‘ 𝐶 ) ) = ( ( 𝐴 · 𝐹 ) mod ( abs ‘ 𝐶 ) ) ) → ( ( ( 𝐵 · 𝐸 ) + - ( 𝐴 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) = ( ( ( 𝐴 · 𝐹 ) + - ( 𝐴 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) ) |
| 306 |
135 136 297 37 304 305
|
syl221anc |
⊢ ( 𝜑 → ( ( ( 𝐵 · 𝐸 ) + - ( 𝐴 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) = ( ( ( 𝐴 · 𝐹 ) + - ( 𝐴 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) ) |
| 307 |
114
|
negidd |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐹 ) + - ( 𝐴 · 𝐹 ) ) = 0 ) |
| 308 |
307
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐹 ) + - ( 𝐴 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) = ( 0 mod ( abs ‘ 𝐶 ) ) ) |
| 309 |
296 306 308
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) = ( 0 mod ( abs ‘ 𝐶 ) ) ) |
| 310 |
309 68
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) = 0 ) |
| 311 |
|
absmod0 |
⊢ ( ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ∈ ℝ ∧ ( abs ‘ 𝐶 ) ∈ ℝ+ ) → ( ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) = 0 ↔ ( ( abs ‘ ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) mod ( abs ‘ 𝐶 ) ) = 0 ) ) |
| 312 |
137 37 311
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) mod ( abs ‘ 𝐶 ) ) = 0 ↔ ( ( abs ‘ ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) mod ( abs ‘ 𝐶 ) ) = 0 ) ) |
| 313 |
310 312
|
mpbid |
⊢ ( 𝜑 → ( ( abs ‘ ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) mod ( abs ‘ 𝐶 ) ) = 0 ) |
| 314 |
115
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) ∈ ℝ ) |
| 315 |
|
mod0 |
⊢ ( ( ( abs ‘ ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) ∈ ℝ ∧ ( abs ‘ 𝐶 ) ∈ ℝ+ ) → ( ( ( abs ‘ ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) mod ( abs ‘ 𝐶 ) ) = 0 ↔ ( ( abs ‘ ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) / ( abs ‘ 𝐶 ) ) ∈ ℤ ) ) |
| 316 |
314 37 315
|
syl2anc |
⊢ ( 𝜑 → ( ( ( abs ‘ ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) mod ( abs ‘ 𝐶 ) ) = 0 ↔ ( ( abs ‘ ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) / ( abs ‘ 𝐶 ) ) ∈ ℤ ) ) |
| 317 |
313 316
|
mpbid |
⊢ ( 𝜑 → ( ( abs ‘ ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ) / ( abs ‘ 𝐶 ) ) ∈ ℤ ) |
| 318 |
292 317
|
eqeltrd |
⊢ ( 𝜑 → ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ∈ ℤ ) |
| 319 |
|
absz |
⊢ ( ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ∈ ℝ → ( ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ∈ ℤ ↔ ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ∈ ℤ ) ) |
| 320 |
138 319
|
syl |
⊢ ( 𝜑 → ( ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ∈ ℤ ↔ ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ∈ ℤ ) ) |
| 321 |
318 320
|
mpbird |
⊢ ( 𝜑 → ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ∈ ℤ ) |
| 322 |
7
|
nnne0d |
⊢ ( 𝜑 → 𝐹 ≠ 0 ) |
| 323 |
6
|
nnne0d |
⊢ ( 𝜑 → 𝐸 ≠ 0 ) |
| 324 |
18 19 14 15 322 323
|
divmuleqd |
⊢ ( 𝜑 → ( ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ↔ ( 𝐵 · 𝐸 ) = ( 𝐴 · 𝐹 ) ) ) |
| 325 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( 𝐸 ↑ 2 ) − ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) = 𝐶 ) |
| 326 |
325
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → 𝐶 = ( ( 𝐸 ↑ 2 ) − ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) |
| 327 |
326
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) · 𝐶 ) = ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) · ( ( 𝐸 ↑ 2 ) − ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) ) |
| 328 |
18 19 322
|
divcld |
⊢ ( 𝜑 → ( 𝐵 / 𝐹 ) ∈ ℂ ) |
| 329 |
328
|
sqcld |
⊢ ( 𝜑 → ( ( 𝐵 / 𝐹 ) ↑ 2 ) ∈ ℂ ) |
| 330 |
329
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( 𝐵 / 𝐹 ) ↑ 2 ) ∈ ℂ ) |
| 331 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( 𝐸 ↑ 2 ) ∈ ℂ ) |
| 332 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( 𝐷 · ( 𝐹 ↑ 2 ) ) ∈ ℂ ) |
| 333 |
330 331 332
|
subdid |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) · ( ( 𝐸 ↑ 2 ) − ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) = ( ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) · ( 𝐸 ↑ 2 ) ) − ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) · ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) ) |
| 334 |
|
oveq1 |
⊢ ( ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) → ( ( 𝐵 / 𝐹 ) ↑ 2 ) = ( ( 𝐴 / 𝐸 ) ↑ 2 ) ) |
| 335 |
334
|
oveq1d |
⊢ ( ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) → ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) · ( 𝐸 ↑ 2 ) ) = ( ( ( 𝐴 / 𝐸 ) ↑ 2 ) · ( 𝐸 ↑ 2 ) ) ) |
| 336 |
335
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) · ( 𝐸 ↑ 2 ) ) = ( ( ( 𝐴 / 𝐸 ) ↑ 2 ) · ( 𝐸 ↑ 2 ) ) ) |
| 337 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → 𝐴 ∈ ℂ ) |
| 338 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → 𝐸 ∈ ℂ ) |
| 339 |
323
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → 𝐸 ≠ 0 ) |
| 340 |
337 338 339
|
sqdivd |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( 𝐴 / 𝐸 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( 𝐸 ↑ 2 ) ) ) |
| 341 |
340
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( ( 𝐴 / 𝐸 ) ↑ 2 ) · ( 𝐸 ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) / ( 𝐸 ↑ 2 ) ) · ( 𝐸 ↑ 2 ) ) ) |
| 342 |
222
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 343 |
|
sqne0 |
⊢ ( 𝐸 ∈ ℂ → ( ( 𝐸 ↑ 2 ) ≠ 0 ↔ 𝐸 ≠ 0 ) ) |
| 344 |
15 343
|
syl |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) ≠ 0 ↔ 𝐸 ≠ 0 ) ) |
| 345 |
323 344
|
mpbird |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ≠ 0 ) |
| 346 |
345
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( 𝐸 ↑ 2 ) ≠ 0 ) |
| 347 |
342 331 346
|
divcan1d |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( ( 𝐴 ↑ 2 ) / ( 𝐸 ↑ 2 ) ) · ( 𝐸 ↑ 2 ) ) = ( 𝐴 ↑ 2 ) ) |
| 348 |
336 341 347
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) · ( 𝐸 ↑ 2 ) ) = ( 𝐴 ↑ 2 ) ) |
| 349 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → 𝐷 ∈ ℂ ) |
| 350 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( 𝐹 ↑ 2 ) ∈ ℂ ) |
| 351 |
330 349 350
|
mul12d |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) · ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) = ( 𝐷 · ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) · ( 𝐹 ↑ 2 ) ) ) ) |
| 352 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → 𝐵 ∈ ℂ ) |
| 353 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → 𝐹 ∈ ℂ ) |
| 354 |
322
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → 𝐹 ≠ 0 ) |
| 355 |
352 353 354
|
sqdivd |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( 𝐵 / 𝐹 ) ↑ 2 ) = ( ( 𝐵 ↑ 2 ) / ( 𝐹 ↑ 2 ) ) ) |
| 356 |
355
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) · ( 𝐹 ↑ 2 ) ) = ( ( ( 𝐵 ↑ 2 ) / ( 𝐹 ↑ 2 ) ) · ( 𝐹 ↑ 2 ) ) ) |
| 357 |
356
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( 𝐷 · ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) · ( 𝐹 ↑ 2 ) ) ) = ( 𝐷 · ( ( ( 𝐵 ↑ 2 ) / ( 𝐹 ↑ 2 ) ) · ( 𝐹 ↑ 2 ) ) ) ) |
| 358 |
209
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 359 |
|
sqne0 |
⊢ ( 𝐹 ∈ ℂ → ( ( 𝐹 ↑ 2 ) ≠ 0 ↔ 𝐹 ≠ 0 ) ) |
| 360 |
19 359
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ↑ 2 ) ≠ 0 ↔ 𝐹 ≠ 0 ) ) |
| 361 |
322 360
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ≠ 0 ) |
| 362 |
361
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( 𝐹 ↑ 2 ) ≠ 0 ) |
| 363 |
358 350 362
|
divcan1d |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( ( 𝐵 ↑ 2 ) / ( 𝐹 ↑ 2 ) ) · ( 𝐹 ↑ 2 ) ) = ( 𝐵 ↑ 2 ) ) |
| 364 |
363
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( 𝐷 · ( ( ( 𝐵 ↑ 2 ) / ( 𝐹 ↑ 2 ) ) · ( 𝐹 ↑ 2 ) ) ) = ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) |
| 365 |
351 357 364
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) · ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) = ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) |
| 366 |
348 365
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) · ( 𝐸 ↑ 2 ) ) − ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) · ( 𝐷 · ( 𝐹 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) ) |
| 367 |
327 333 366
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) · 𝐶 ) = ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) ) |
| 368 |
10
|
eqcomd |
⊢ ( 𝜑 → 𝐶 = ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) ) |
| 369 |
368
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → 𝐶 = ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) ) |
| 370 |
367 369
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) · 𝐶 ) / 𝐶 ) = ( ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) / ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) ) ) |
| 371 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → 𝐶 ∈ ℂ ) |
| 372 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → 𝐶 ≠ 0 ) |
| 373 |
330 371 372
|
divcan4d |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) · 𝐶 ) / 𝐶 ) = ( ( 𝐵 / 𝐹 ) ↑ 2 ) ) |
| 374 |
10 10
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) / ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) ) = ( 𝐶 / 𝐶 ) ) |
| 375 |
23 9
|
dividd |
⊢ ( 𝜑 → ( 𝐶 / 𝐶 ) = 1 ) |
| 376 |
374 375
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) / ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) ) = 1 ) |
| 377 |
376
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) / ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) ) = 1 ) |
| 378 |
370 373 377
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( 𝐵 / 𝐹 ) ↑ 2 ) = 1 ) |
| 379 |
32 33 322
|
redivcld |
⊢ ( 𝜑 → ( 𝐵 / 𝐹 ) ∈ ℝ ) |
| 380 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝐵 ∈ ℕ0 ) |
| 381 |
380
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝐵 ) |
| 382 |
7
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝐹 ) |
| 383 |
|
divge0 |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ ( 𝐹 ∈ ℝ ∧ 0 < 𝐹 ) ) → 0 ≤ ( 𝐵 / 𝐹 ) ) |
| 384 |
32 381 33 382 383
|
syl22anc |
⊢ ( 𝜑 → 0 ≤ ( 𝐵 / 𝐹 ) ) |
| 385 |
379 384
|
sqrtsqd |
⊢ ( 𝜑 → ( √ ‘ ( ( 𝐵 / 𝐹 ) ↑ 2 ) ) = ( 𝐵 / 𝐹 ) ) |
| 386 |
385
|
eqcomd |
⊢ ( 𝜑 → ( 𝐵 / 𝐹 ) = ( √ ‘ ( ( 𝐵 / 𝐹 ) ↑ 2 ) ) ) |
| 387 |
386
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) ∧ ( ( 𝐵 / 𝐹 ) ↑ 2 ) = 1 ) → ( 𝐵 / 𝐹 ) = ( √ ‘ ( ( 𝐵 / 𝐹 ) ↑ 2 ) ) ) |
| 388 |
|
fveq2 |
⊢ ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) = 1 → ( √ ‘ ( ( 𝐵 / 𝐹 ) ↑ 2 ) ) = ( √ ‘ 1 ) ) |
| 389 |
388
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) ∧ ( ( 𝐵 / 𝐹 ) ↑ 2 ) = 1 ) → ( √ ‘ ( ( 𝐵 / 𝐹 ) ↑ 2 ) ) = ( √ ‘ 1 ) ) |
| 390 |
|
sqrt1 |
⊢ ( √ ‘ 1 ) = 1 |
| 391 |
390
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) ∧ ( ( 𝐵 / 𝐹 ) ↑ 2 ) = 1 ) → ( √ ‘ 1 ) = 1 ) |
| 392 |
387 389 391
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) ∧ ( ( 𝐵 / 𝐹 ) ↑ 2 ) = 1 ) → ( 𝐵 / 𝐹 ) = 1 ) |
| 393 |
392
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) = 1 → ( 𝐵 / 𝐹 ) = 1 ) ) |
| 394 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) ∧ ( 𝐵 / 𝐹 ) = 1 ) → ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) |
| 395 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) ∧ ( 𝐵 / 𝐹 ) = 1 ) → ( 𝐵 / 𝐹 ) = 1 ) |
| 396 |
394 395
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) ∧ ( 𝐵 / 𝐹 ) = 1 ) → ( 𝐴 / 𝐸 ) = 1 ) |
| 397 |
396
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) ∧ ( 𝐵 / 𝐹 ) = 1 ) → ( ( 𝐴 / 𝐸 ) · 𝐸 ) = ( 1 · 𝐸 ) ) |
| 398 |
14 15 323
|
divcan1d |
⊢ ( 𝜑 → ( ( 𝐴 / 𝐸 ) · 𝐸 ) = 𝐴 ) |
| 399 |
398
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) ∧ ( 𝐵 / 𝐹 ) = 1 ) → ( ( 𝐴 / 𝐸 ) · 𝐸 ) = 𝐴 ) |
| 400 |
15
|
mullidd |
⊢ ( 𝜑 → ( 1 · 𝐸 ) = 𝐸 ) |
| 401 |
400
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) ∧ ( 𝐵 / 𝐹 ) = 1 ) → ( 1 · 𝐸 ) = 𝐸 ) |
| 402 |
397 399 401
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) ∧ ( 𝐵 / 𝐹 ) = 1 ) → 𝐴 = 𝐸 ) |
| 403 |
395
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) ∧ ( 𝐵 / 𝐹 ) = 1 ) → ( ( 𝐵 / 𝐹 ) · 𝐹 ) = ( 1 · 𝐹 ) ) |
| 404 |
18 19 322
|
divcan1d |
⊢ ( 𝜑 → ( ( 𝐵 / 𝐹 ) · 𝐹 ) = 𝐵 ) |
| 405 |
404
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) ∧ ( 𝐵 / 𝐹 ) = 1 ) → ( ( 𝐵 / 𝐹 ) · 𝐹 ) = 𝐵 ) |
| 406 |
19
|
mullidd |
⊢ ( 𝜑 → ( 1 · 𝐹 ) = 𝐹 ) |
| 407 |
406
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) ∧ ( 𝐵 / 𝐹 ) = 1 ) → ( 1 · 𝐹 ) = 𝐹 ) |
| 408 |
403 405 407
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) ∧ ( 𝐵 / 𝐹 ) = 1 ) → 𝐵 = 𝐹 ) |
| 409 |
402 408
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) ∧ ( 𝐵 / 𝐹 ) = 1 ) → ( 𝐴 = 𝐸 ∧ 𝐵 = 𝐹 ) ) |
| 410 |
409
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( 𝐵 / 𝐹 ) = 1 → ( 𝐴 = 𝐸 ∧ 𝐵 = 𝐹 ) ) ) |
| 411 |
393 410
|
syld |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( ( ( 𝐵 / 𝐹 ) ↑ 2 ) = 1 → ( 𝐴 = 𝐸 ∧ 𝐵 = 𝐹 ) ) ) |
| 412 |
378 411
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) ) → ( 𝐴 = 𝐸 ∧ 𝐵 = 𝐹 ) ) |
| 413 |
412
|
ex |
⊢ ( 𝜑 → ( ( 𝐵 / 𝐹 ) = ( 𝐴 / 𝐸 ) → ( 𝐴 = 𝐸 ∧ 𝐵 = 𝐹 ) ) ) |
| 414 |
324 413
|
sylbird |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐸 ) = ( 𝐴 · 𝐹 ) → ( 𝐴 = 𝐸 ∧ 𝐵 = 𝐹 ) ) ) |
| 415 |
8 414
|
mtod |
⊢ ( 𝜑 → ¬ ( 𝐵 · 𝐸 ) = ( 𝐴 · 𝐹 ) ) |
| 416 |
415
|
neqned |
⊢ ( 𝜑 → ( 𝐵 · 𝐸 ) ≠ ( 𝐴 · 𝐹 ) ) |
| 417 |
113 114 416
|
subne0d |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) ≠ 0 ) |
| 418 |
115 23 417 9
|
divne0d |
⊢ ( 𝜑 → ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ≠ 0 ) |
| 419 |
|
nnabscl |
⊢ ( ( ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ∈ ℤ ∧ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ≠ 0 ) → ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ∈ ℕ ) |
| 420 |
321 418 419
|
syl2anc |
⊢ ( 𝜑 → ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ∈ ℕ ) |
| 421 |
|
oveq1 |
⊢ ( 𝑎 = ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) → ( 𝑎 ↑ 2 ) = ( ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ↑ 2 ) ) |
| 422 |
421
|
oveq1d |
⊢ ( 𝑎 = ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = ( ( ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) ) |
| 423 |
422
|
eqeq1d |
⊢ ( 𝑎 = ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) → ( ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ↔ ( ( ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) |
| 424 |
|
oveq1 |
⊢ ( 𝑏 = ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) → ( 𝑏 ↑ 2 ) = ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) |
| 425 |
424
|
oveq2d |
⊢ ( 𝑏 = ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) → ( 𝐷 · ( 𝑏 ↑ 2 ) ) = ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) ) |
| 426 |
425
|
oveq2d |
⊢ ( 𝑏 = ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) → ( ( ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = ( ( ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ↑ 2 ) − ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) ) ) |
| 427 |
426
|
eqeq1d |
⊢ ( 𝑏 = ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) → ( ( ( ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ↔ ( ( ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ↑ 2 ) − ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) ) = 1 ) ) |
| 428 |
423 427
|
rspc2ev |
⊢ ( ( ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ∈ ℕ ∧ ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ∈ ℕ ∧ ( ( ( abs ‘ ( ( ( 𝐴 · 𝐸 ) − ( 𝐷 · ( 𝐵 · 𝐹 ) ) ) / 𝐶 ) ) ↑ 2 ) − ( 𝐷 · ( ( abs ‘ ( ( ( 𝐵 · 𝐸 ) − ( 𝐴 · 𝐹 ) ) / 𝐶 ) ) ↑ 2 ) ) ) = 1 ) → ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) |
| 429 |
291 420 276 428
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) |