| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pell14qrrp | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ∈  ℝ+ )  | 
						
						
							| 2 | 
							
								
							 | 
							pellfundrp | 
							⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( PellFund ‘ 𝐷 )  ∈  ℝ+ )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( PellFund ‘ 𝐷 )  ∈  ℝ+ )  | 
						
						
							| 4 | 
							
								
							 | 
							pellfundne1 | 
							⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( PellFund ‘ 𝐷 )  ≠  1 )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( PellFund ‘ 𝐷 )  ≠  1 )  | 
						
						
							| 6 | 
							
								
							 | 
							reglogcl | 
							⊢ ( ( 𝐴  ∈  ℝ+  ∧  ( PellFund ‘ 𝐷 )  ∈  ℝ+  ∧  ( PellFund ‘ 𝐷 )  ≠  1 )  →  ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  ∈  ℝ )  | 
						
						
							| 7 | 
							
								1 3 5 6
							 | 
							syl3anc | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  ∈  ℝ )  | 
						
						
							| 8 | 
							
								7
							 | 
							flcld | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) )  ∈  ℤ )  | 
						
						
							| 9 | 
							
								
							 | 
							pell14qrre | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ∈  ℝ )  | 
						
						
							| 10 | 
							
								9
							 | 
							recnd | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ∈  ℂ )  | 
						
						
							| 11 | 
							
								3 8
							 | 
							rpexpcld | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  ∈  ℝ+ )  | 
						
						
							| 12 | 
							
								11
							 | 
							rpcnd | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  ∈  ℂ )  | 
						
						
							| 13 | 
							
								8
							 | 
							znegcld | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) )  ∈  ℤ )  | 
						
						
							| 14 | 
							
								3 13
							 | 
							rpexpcld | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  ∈  ℝ+ )  | 
						
						
							| 15 | 
							
								14
							 | 
							rpcnd | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  ∈  ℂ )  | 
						
						
							| 16 | 
							
								14
							 | 
							rpne0d | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  ≠  0 )  | 
						
						
							| 17 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐷  ∈  ( ℕ  ∖  ◻NN ) )  | 
						
						
							| 18 | 
							
								
							 | 
							pell1qrss14 | 
							⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( Pell1QR ‘ 𝐷 )  ⊆  ( Pell14QR ‘ 𝐷 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							pellfundex | 
							⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( PellFund ‘ 𝐷 )  ∈  ( Pell1QR ‘ 𝐷 ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							sseldd | 
							⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( PellFund ‘ 𝐷 )  ∈  ( Pell14QR ‘ 𝐷 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( PellFund ‘ 𝐷 )  ∈  ( Pell14QR ‘ 𝐷 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							pell14qrexpcl | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( PellFund ‘ 𝐷 )  ∈  ( Pell14QR ‘ 𝐷 )  ∧  - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) )  ∈  ℤ )  →  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  ∈  ( Pell14QR ‘ 𝐷 ) )  | 
						
						
							| 23 | 
							
								17 21 13 22
							 | 
							syl3anc | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  ∈  ( Pell14QR ‘ 𝐷 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							pell14qrmulcl | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  ∈  ( Pell14QR ‘ 𝐷 ) )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							mpd3an3 | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  ∈  ( Pell14QR ‘ 𝐷 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							1rp | 
							⊢ 1  ∈  ℝ+  | 
						
						
							| 27 | 
							
								26
							 | 
							a1i | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  1  ∈  ℝ+ )  | 
						
						
							| 28 | 
							
								
							 | 
							modge0 | 
							⊢ ( ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  ∈  ℝ  ∧  1  ∈  ℝ+ )  →  0  ≤  ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  mod  1 ) )  | 
						
						
							| 29 | 
							
								7 27 28
							 | 
							syl2anc | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  0  ≤  ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  mod  1 ) )  | 
						
						
							| 30 | 
							
								7
							 | 
							recnd | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  ∈  ℂ )  | 
						
						
							| 31 | 
							
								8
							 | 
							zcnd | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) )  ∈  ℂ )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							negsubd | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  +  - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  =  ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  −  ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							modfrac | 
							⊢ ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  ∈  ℝ  →  ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  mod  1 )  =  ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  −  ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  | 
						
						
							| 34 | 
							
								7 33
							 | 
							syl | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  mod  1 )  =  ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  −  ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  | 
						
						
							| 35 | 
							
								32 34
							 | 
							eqtr4d | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  +  - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  =  ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  mod  1 ) )  | 
						
						
							| 36 | 
							
								29 35
							 | 
							breqtrrd | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  0  ≤  ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  +  - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							reglog1 | 
							⊢ ( ( ( PellFund ‘ 𝐷 )  ∈  ℝ+  ∧  ( PellFund ‘ 𝐷 )  ≠  1 )  →  ( ( log ‘ 1 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  =  0 )  | 
						
						
							| 38 | 
							
								3 5 37
							 | 
							syl2anc | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( log ‘ 1 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  =  0 )  | 
						
						
							| 39 | 
							
								
							 | 
							reglogmul | 
							⊢ ( ( 𝐴  ∈  ℝ+  ∧  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  ∈  ℝ+  ∧  ( ( PellFund ‘ 𝐷 )  ∈  ℝ+  ∧  ( PellFund ‘ 𝐷 )  ≠  1 ) )  →  ( ( log ‘ ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  =  ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  +  ( ( log ‘ ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  | 
						
						
							| 40 | 
							
								1 14 3 5 39
							 | 
							syl112anc | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( log ‘ ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  =  ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  +  ( ( log ‘ ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							reglogexpbas | 
							⊢ ( ( - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) )  ∈  ℤ  ∧  ( ( PellFund ‘ 𝐷 )  ∈  ℝ+  ∧  ( PellFund ‘ 𝐷 )  ≠  1 ) )  →  ( ( log ‘ ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  =  - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  | 
						
						
							| 42 | 
							
								13 3 5 41
							 | 
							syl12anc | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( log ‘ ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  =  - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							oveq2d | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  +  ( ( log ‘ ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) )  =  ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  +  - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  | 
						
						
							| 44 | 
							
								40 43
							 | 
							eqtrd | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( log ‘ ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  =  ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  +  - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  | 
						
						
							| 45 | 
							
								36 38 44
							 | 
							3brtr4d | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( log ‘ 1 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  ≤  ( ( log ‘ ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) )  | 
						
						
							| 46 | 
							
								1 14
							 | 
							rpmulcld | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  ∈  ℝ+ )  | 
						
						
							| 47 | 
							
								
							 | 
							pellfundgt1 | 
							⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  1  <  ( PellFund ‘ 𝐷 ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							adantr | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  1  <  ( PellFund ‘ 𝐷 ) )  | 
						
						
							| 49 | 
							
								
							 | 
							reglogleb | 
							⊢ ( ( ( 1  ∈  ℝ+  ∧  ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  ∈  ℝ+ )  ∧  ( ( PellFund ‘ 𝐷 )  ∈  ℝ+  ∧  1  <  ( PellFund ‘ 𝐷 ) ) )  →  ( 1  ≤  ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  ↔  ( ( log ‘ 1 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  ≤  ( ( log ‘ ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  | 
						
						
							| 50 | 
							
								27 46 3 48 49
							 | 
							syl22anc | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 1  ≤  ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  ↔  ( ( log ‘ 1 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  ≤  ( ( log ‘ ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  | 
						
						
							| 51 | 
							
								45 50
							 | 
							mpbird | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  1  ≤  ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							modlt | 
							⊢ ( ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  ∈  ℝ  ∧  1  ∈  ℝ+ )  →  ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  mod  1 )  <  1 )  | 
						
						
							| 53 | 
							
								7 27 52
							 | 
							syl2anc | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  mod  1 )  <  1 )  | 
						
						
							| 54 | 
							
								35 53
							 | 
							eqbrtrd | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  +  - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  <  1 )  | 
						
						
							| 55 | 
							
								
							 | 
							reglogbas | 
							⊢ ( ( ( PellFund ‘ 𝐷 )  ∈  ℝ+  ∧  ( PellFund ‘ 𝐷 )  ≠  1 )  →  ( ( log ‘ ( PellFund ‘ 𝐷 ) )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  =  1 )  | 
						
						
							| 56 | 
							
								3 5 55
							 | 
							syl2anc | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( log ‘ ( PellFund ‘ 𝐷 ) )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  =  1 )  | 
						
						
							| 57 | 
							
								54 44 56
							 | 
							3brtr4d | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( log ‘ ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  <  ( ( log ‘ ( PellFund ‘ 𝐷 ) )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) )  | 
						
						
							| 58 | 
							
								
							 | 
							reglogltb | 
							⊢ ( ( ( ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  ∈  ℝ+  ∧  ( PellFund ‘ 𝐷 )  ∈  ℝ+ )  ∧  ( ( PellFund ‘ 𝐷 )  ∈  ℝ+  ∧  1  <  ( PellFund ‘ 𝐷 ) ) )  →  ( ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  <  ( PellFund ‘ 𝐷 )  ↔  ( ( log ‘ ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  <  ( ( log ‘ ( PellFund ‘ 𝐷 ) )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  | 
						
						
							| 59 | 
							
								46 3 3 48 58
							 | 
							syl22anc | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  <  ( PellFund ‘ 𝐷 )  ↔  ( ( log ‘ ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) )  <  ( ( log ‘ ( PellFund ‘ 𝐷 ) )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  | 
						
						
							| 60 | 
							
								57 59
							 | 
							mpbird | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  <  ( PellFund ‘ 𝐷 ) )  | 
						
						
							| 61 | 
							
								
							 | 
							pellfund14gap | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  ∈  ( Pell14QR ‘ 𝐷 )  ∧  ( 1  ≤  ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  ∧  ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  <  ( PellFund ‘ 𝐷 ) ) )  →  ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  =  1 )  | 
						
						
							| 62 | 
							
								17 25 51 60 61
							 | 
							syl112anc | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  =  1 )  | 
						
						
							| 63 | 
							
								31
							 | 
							negidd | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) )  +  - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  =  0 )  | 
						
						
							| 64 | 
							
								63
							 | 
							oveq2d | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( PellFund ‘ 𝐷 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) )  +  - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  =  ( ( PellFund ‘ 𝐷 ) ↑ 0 ) )  | 
						
						
							| 65 | 
							
								3
							 | 
							rpcnd | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( PellFund ‘ 𝐷 )  ∈  ℂ )  | 
						
						
							| 66 | 
							
								3
							 | 
							rpne0d | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( PellFund ‘ 𝐷 )  ≠  0 )  | 
						
						
							| 67 | 
							
								
							 | 
							expaddz | 
							⊢ ( ( ( ( PellFund ‘ 𝐷 )  ∈  ℂ  ∧  ( PellFund ‘ 𝐷 )  ≠  0 )  ∧  ( ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) )  ∈  ℤ  ∧  - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) )  ∈  ℤ ) )  →  ( ( PellFund ‘ 𝐷 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) )  +  - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  =  ( ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) )  | 
						
						
							| 68 | 
							
								65 66 8 13 67
							 | 
							syl22anc | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( PellFund ‘ 𝐷 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) )  +  - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  =  ( ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) )  | 
						
						
							| 69 | 
							
								65
							 | 
							exp0d | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( PellFund ‘ 𝐷 ) ↑ 0 )  =  1 )  | 
						
						
							| 70 | 
							
								64 68 69
							 | 
							3eqtr3rd | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  1  =  ( ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) )  | 
						
						
							| 71 | 
							
								62 70
							 | 
							eqtrd | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  =  ( ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )  ·  ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) )  | 
						
						
							| 72 | 
							
								10 12 15 16 71
							 | 
							mulcan2ad | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  =  ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  | 
						
						
							| 73 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑥  =  ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) )  →  ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 )  =  ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							rspceeqv | 
							⊢ ( ( ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) )  ∈  ℤ  ∧  𝐴  =  ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 )  /  ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )  →  ∃ 𝑥  ∈  ℤ 𝐴  =  ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) )  | 
						
						
							| 75 | 
							
								8 72 74
							 | 
							syl2anc | 
							⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ∃ 𝑥  ∈  ℤ 𝐴  =  ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) )  |