Step |
Hyp |
Ref |
Expression |
1 |
|
pell14qrrp |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ+ ) |
2 |
|
pellfundrp |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ℝ+ ) |
3 |
2
|
adantr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ∈ ℝ+ ) |
4 |
|
pellfundne1 |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ≠ 1 ) |
5 |
4
|
adantr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ≠ 1 ) |
6 |
|
reglogcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( PellFund ‘ 𝐷 ) ∈ ℝ+ ∧ ( PellFund ‘ 𝐷 ) ≠ 1 ) → ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ∈ ℝ ) |
7 |
1 3 5 6
|
syl3anc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ∈ ℝ ) |
8 |
7
|
flcld |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ∈ ℤ ) |
9 |
|
pell14qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ ) |
10 |
9
|
recnd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℂ ) |
11 |
3 8
|
rpexpcld |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ∈ ℝ+ ) |
12 |
11
|
rpcnd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ∈ ℂ ) |
13 |
8
|
znegcld |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ∈ ℤ ) |
14 |
3 13
|
rpexpcld |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ∈ ℝ+ ) |
15 |
14
|
rpcnd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ∈ ℂ ) |
16 |
14
|
rpne0d |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ≠ 0 ) |
17 |
|
simpl |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) ) |
18 |
|
pell1qrss14 |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) ) |
19 |
|
pellfundex |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) |
20 |
18 19
|
sseldd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
22 |
|
pell14qrexpcl |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( PellFund ‘ 𝐷 ) ∈ ( Pell14QR ‘ 𝐷 ) ∧ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ∈ ℤ ) → ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
23 |
17 21 13 22
|
syl3anc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
24 |
|
pell14qrmulcl |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
25 |
23 24
|
mpd3an3 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
26 |
|
1rp |
⊢ 1 ∈ ℝ+ |
27 |
26
|
a1i |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 1 ∈ ℝ+ ) |
28 |
|
modge0 |
⊢ ( ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ∈ ℝ ∧ 1 ∈ ℝ+ ) → 0 ≤ ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) mod 1 ) ) |
29 |
7 27 28
|
syl2anc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 0 ≤ ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) mod 1 ) ) |
30 |
7
|
recnd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ∈ ℂ ) |
31 |
8
|
zcnd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ∈ ℂ ) |
32 |
30 31
|
negsubd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) − ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) |
33 |
|
modfrac |
⊢ ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ∈ ℝ → ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) mod 1 ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) − ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) |
34 |
7 33
|
syl |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) mod 1 ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) − ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) |
35 |
32 34
|
eqtr4d |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) mod 1 ) ) |
36 |
29 35
|
breqtrrd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 0 ≤ ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) |
37 |
|
reglog1 |
⊢ ( ( ( PellFund ‘ 𝐷 ) ∈ ℝ+ ∧ ( PellFund ‘ 𝐷 ) ≠ 1 ) → ( ( log ‘ 1 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) = 0 ) |
38 |
3 5 37
|
syl2anc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( log ‘ 1 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) = 0 ) |
39 |
|
reglogmul |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ∈ ℝ+ ∧ ( ( PellFund ‘ 𝐷 ) ∈ ℝ+ ∧ ( PellFund ‘ 𝐷 ) ≠ 1 ) ) → ( ( log ‘ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) + ( ( log ‘ ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) |
40 |
1 14 3 5 39
|
syl112anc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( log ‘ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) + ( ( log ‘ ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) |
41 |
|
reglogexpbas |
⊢ ( ( - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ∈ ℤ ∧ ( ( PellFund ‘ 𝐷 ) ∈ ℝ+ ∧ ( PellFund ‘ 𝐷 ) ≠ 1 ) ) → ( ( log ‘ ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) = - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) |
42 |
13 3 5 41
|
syl12anc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( log ‘ ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) = - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) |
43 |
42
|
oveq2d |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) + ( ( log ‘ ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) |
44 |
40 43
|
eqtrd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( log ‘ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) |
45 |
36 38 44
|
3brtr4d |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( log ‘ 1 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ≤ ( ( log ‘ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) |
46 |
1 14
|
rpmulcld |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ∈ ℝ+ ) |
47 |
|
pellfundgt1 |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 < ( PellFund ‘ 𝐷 ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 1 < ( PellFund ‘ 𝐷 ) ) |
49 |
|
reglogleb |
⊢ ( ( ( 1 ∈ ℝ+ ∧ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ∈ ℝ+ ) ∧ ( ( PellFund ‘ 𝐷 ) ∈ ℝ+ ∧ 1 < ( PellFund ‘ 𝐷 ) ) ) → ( 1 ≤ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ↔ ( ( log ‘ 1 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ≤ ( ( log ‘ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) |
50 |
27 46 3 48 49
|
syl22anc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 1 ≤ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ↔ ( ( log ‘ 1 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ≤ ( ( log ‘ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) |
51 |
45 50
|
mpbird |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 1 ≤ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) |
52 |
|
modlt |
⊢ ( ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ∈ ℝ ∧ 1 ∈ ℝ+ ) → ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) mod 1 ) < 1 ) |
53 |
7 27 52
|
syl2anc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) mod 1 ) < 1 ) |
54 |
35 53
|
eqbrtrd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) < 1 ) |
55 |
|
reglogbas |
⊢ ( ( ( PellFund ‘ 𝐷 ) ∈ ℝ+ ∧ ( PellFund ‘ 𝐷 ) ≠ 1 ) → ( ( log ‘ ( PellFund ‘ 𝐷 ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) = 1 ) |
56 |
3 5 55
|
syl2anc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( log ‘ ( PellFund ‘ 𝐷 ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) = 1 ) |
57 |
54 44 56
|
3brtr4d |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( log ‘ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) < ( ( log ‘ ( PellFund ‘ 𝐷 ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) |
58 |
|
reglogltb |
⊢ ( ( ( ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ∈ ℝ+ ∧ ( PellFund ‘ 𝐷 ) ∈ ℝ+ ) ∧ ( ( PellFund ‘ 𝐷 ) ∈ ℝ+ ∧ 1 < ( PellFund ‘ 𝐷 ) ) ) → ( ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) < ( PellFund ‘ 𝐷 ) ↔ ( ( log ‘ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) < ( ( log ‘ ( PellFund ‘ 𝐷 ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) |
59 |
46 3 3 48 58
|
syl22anc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) < ( PellFund ‘ 𝐷 ) ↔ ( ( log ‘ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) < ( ( log ‘ ( PellFund ‘ 𝐷 ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) |
60 |
57 59
|
mpbird |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) < ( PellFund ‘ 𝐷 ) ) |
61 |
|
pellfund14gap |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( 1 ≤ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ∧ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) < ( PellFund ‘ 𝐷 ) ) ) → ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) = 1 ) |
62 |
17 25 51 60 61
|
syl112anc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) = 1 ) |
63 |
31
|
negidd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) = 0 ) |
64 |
63
|
oveq2d |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) = ( ( PellFund ‘ 𝐷 ) ↑ 0 ) ) |
65 |
3
|
rpcnd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ∈ ℂ ) |
66 |
3
|
rpne0d |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ≠ 0 ) |
67 |
|
expaddz |
⊢ ( ( ( ( PellFund ‘ 𝐷 ) ∈ ℂ ∧ ( PellFund ‘ 𝐷 ) ≠ 0 ) ∧ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ∈ ℤ ∧ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ∈ ℤ ) ) → ( ( PellFund ‘ 𝐷 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) = ( ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) |
68 |
65 66 8 13 67
|
syl22anc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) = ( ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) |
69 |
65
|
exp0d |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ↑ 0 ) = 1 ) |
70 |
64 68 69
|
3eqtr3rd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 1 = ( ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) |
71 |
62 70
|
eqtrd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) = ( ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) |
72 |
10 12 15 16 71
|
mulcan2ad |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 = ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) |
73 |
|
oveq2 |
⊢ ( 𝑥 = ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) → ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) = ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) |
74 |
73
|
rspceeqv |
⊢ ( ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ∈ ℤ ∧ 𝐴 = ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) → ∃ 𝑥 ∈ ℤ 𝐴 = ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) ) |
75 |
8 72 74
|
syl2anc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ∃ 𝑥 ∈ ℤ 𝐴 = ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) ) |