Step |
Hyp |
Ref |
Expression |
1 |
|
pellfund14 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ∃ 𝑥 ∈ ℤ 𝐴 = ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) ) |
2 |
|
simpll |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑥 ∈ ℤ ) ∧ 𝐴 = ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) ) |
3 |
|
pell1qrss14 |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) ) |
4 |
|
pellfundex |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) |
5 |
3 4
|
sseldd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
6 |
5
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑥 ∈ ℤ ) ∧ 𝐴 = ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
7 |
|
simplr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑥 ∈ ℤ ) ∧ 𝐴 = ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) ) → 𝑥 ∈ ℤ ) |
8 |
|
pell14qrexpcl |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( PellFund ‘ 𝐷 ) ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝑥 ∈ ℤ ) → ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
9 |
2 6 7 8
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑥 ∈ ℤ ) ∧ 𝐴 = ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) ) → ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
10 |
|
eleq1 |
⊢ ( 𝐴 = ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) → ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑥 ∈ ℤ ) ∧ 𝐴 = ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) ) → ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) |
12 |
9 11
|
mpbird |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑥 ∈ ℤ ) ∧ 𝐴 = ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) ) → 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) |
13 |
12
|
r19.29an |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ∃ 𝑥 ∈ ℤ 𝐴 = ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) ) → 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) |
14 |
1 13
|
impbida |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ↔ ∃ 𝑥 ∈ ℤ 𝐴 = ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) ) ) |