Step |
Hyp |
Ref |
Expression |
1 |
|
simp3r |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( 1 ≤ 𝐴 ∧ 𝐴 < ( PellFund ‘ 𝐷 ) ) ) → 𝐴 < ( PellFund ‘ 𝐷 ) ) |
2 |
|
pell14qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ ) |
3 |
2
|
3adant3 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( 1 ≤ 𝐴 ∧ 𝐴 < ( PellFund ‘ 𝐷 ) ) ) → 𝐴 ∈ ℝ ) |
4 |
|
pellfundre |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ℝ ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( 1 ≤ 𝐴 ∧ 𝐴 < ( PellFund ‘ 𝐷 ) ) ) → ( PellFund ‘ 𝐷 ) ∈ ℝ ) |
6 |
3 5
|
ltnled |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( 1 ≤ 𝐴 ∧ 𝐴 < ( PellFund ‘ 𝐷 ) ) ) → ( 𝐴 < ( PellFund ‘ 𝐷 ) ↔ ¬ ( PellFund ‘ 𝐷 ) ≤ 𝐴 ) ) |
7 |
1 6
|
mpbid |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( 1 ≤ 𝐴 ∧ 𝐴 < ( PellFund ‘ 𝐷 ) ) ) → ¬ ( PellFund ‘ 𝐷 ) ≤ 𝐴 ) |
8 |
|
simpl1 |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( 1 ≤ 𝐴 ∧ 𝐴 < ( PellFund ‘ 𝐷 ) ) ) ∧ 1 < 𝐴 ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) ) |
9 |
|
simpl2 |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( 1 ≤ 𝐴 ∧ 𝐴 < ( PellFund ‘ 𝐷 ) ) ) ∧ 1 < 𝐴 ) → 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) |
10 |
|
simpr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( 1 ≤ 𝐴 ∧ 𝐴 < ( PellFund ‘ 𝐷 ) ) ) ∧ 1 < 𝐴 ) → 1 < 𝐴 ) |
11 |
|
pellfundlb |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( PellFund ‘ 𝐷 ) ≤ 𝐴 ) |
12 |
8 9 10 11
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( 1 ≤ 𝐴 ∧ 𝐴 < ( PellFund ‘ 𝐷 ) ) ) ∧ 1 < 𝐴 ) → ( PellFund ‘ 𝐷 ) ≤ 𝐴 ) |
13 |
7 12
|
mtand |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( 1 ≤ 𝐴 ∧ 𝐴 < ( PellFund ‘ 𝐷 ) ) ) → ¬ 1 < 𝐴 ) |
14 |
|
simp3l |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( 1 ≤ 𝐴 ∧ 𝐴 < ( PellFund ‘ 𝐷 ) ) ) → 1 ≤ 𝐴 ) |
15 |
|
1re |
⊢ 1 ∈ ℝ |
16 |
|
leloe |
⊢ ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 1 ≤ 𝐴 ↔ ( 1 < 𝐴 ∨ 1 = 𝐴 ) ) ) |
17 |
15 3 16
|
sylancr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( 1 ≤ 𝐴 ∧ 𝐴 < ( PellFund ‘ 𝐷 ) ) ) → ( 1 ≤ 𝐴 ↔ ( 1 < 𝐴 ∨ 1 = 𝐴 ) ) ) |
18 |
14 17
|
mpbid |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( 1 ≤ 𝐴 ∧ 𝐴 < ( PellFund ‘ 𝐷 ) ) ) → ( 1 < 𝐴 ∨ 1 = 𝐴 ) ) |
19 |
|
orel1 |
⊢ ( ¬ 1 < 𝐴 → ( ( 1 < 𝐴 ∨ 1 = 𝐴 ) → 1 = 𝐴 ) ) |
20 |
13 18 19
|
sylc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( 1 ≤ 𝐴 ∧ 𝐴 < ( PellFund ‘ 𝐷 ) ) ) → 1 = 𝐴 ) |
21 |
20
|
eqcomd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( 1 ≤ 𝐴 ∧ 𝐴 < ( PellFund ‘ 𝐷 ) ) ) → 𝐴 = 1 ) |