Step |
Hyp |
Ref |
Expression |
1 |
|
ssrab2 |
⊢ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ⊆ ( Pell14QR ‘ 𝐷 ) |
2 |
|
pell14qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝑎 ∈ ℝ ) |
3 |
2
|
ex |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) → 𝑎 ∈ ℝ ) ) |
4 |
3
|
ssrdv |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell14QR ‘ 𝐷 ) ⊆ ℝ ) |
5 |
1 4
|
sstrid |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ⊆ ℝ ) |
6 |
|
pell1qrss14 |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) ) |
7 |
|
pellqrex |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ∃ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) 1 < 𝑎 ) |
8 |
|
ssrexv |
⊢ ( ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) → ( ∃ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) 1 < 𝑎 → ∃ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) 1 < 𝑎 ) ) |
9 |
6 7 8
|
sylc |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ∃ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) 1 < 𝑎 ) |
10 |
|
rabn0 |
⊢ ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ≠ ∅ ↔ ∃ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) 1 < 𝑎 ) |
11 |
9 10
|
sylibr |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ≠ ∅ ) |
12 |
|
eldifi |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℕ ) |
13 |
12
|
peano2nnd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐷 + 1 ) ∈ ℕ ) |
14 |
13
|
nnrpd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐷 + 1 ) ∈ ℝ+ ) |
15 |
14
|
rpsqrtcld |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( √ ‘ ( 𝐷 + 1 ) ) ∈ ℝ+ ) |
16 |
15
|
rpred |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( √ ‘ ( 𝐷 + 1 ) ) ∈ ℝ ) |
17 |
12
|
nnrpd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℝ+ ) |
18 |
17
|
rpsqrtcld |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( √ ‘ 𝐷 ) ∈ ℝ+ ) |
19 |
18
|
rpred |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( √ ‘ 𝐷 ) ∈ ℝ ) |
20 |
16 19
|
readdcld |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ∈ ℝ ) |
21 |
|
breq2 |
⊢ ( 𝑎 = 𝑏 → ( 1 < 𝑎 ↔ 1 < 𝑏 ) ) |
22 |
21
|
elrab |
⊢ ( 𝑏 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ↔ ( 𝑏 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑏 ) ) |
23 |
|
pell14qrgap |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑏 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑏 ) → ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ≤ 𝑏 ) |
24 |
23
|
3expib |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 𝑏 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑏 ) → ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ≤ 𝑏 ) ) |
25 |
22 24
|
syl5bi |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑏 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } → ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ≤ 𝑏 ) ) |
26 |
25
|
ralrimiv |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ∀ 𝑏 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ≤ 𝑏 ) |
27 |
|
infmrgelbi |
⊢ ( ( ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ⊆ ℝ ∧ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ≠ ∅ ∧ ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ∈ ℝ ) ∧ ∀ 𝑏 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ≤ 𝑏 ) → ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ≤ inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) ) |
28 |
5 11 20 26 27
|
syl31anc |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ≤ inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) ) |
29 |
|
pellfundval |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) = inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) ) |
30 |
28 29
|
breqtrrd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ≤ ( PellFund ‘ 𝐷 ) ) |