Metamath Proof Explorer


Theorem pellfundge

Description: Lower bound on the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 19-Sep-2014)

Ref Expression
Assertion pellfundge ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ≤ ( PellFund ‘ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 ssrab2 { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ⊆ ( Pell14QR ‘ 𝐷 )
2 pell14qrre ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝑎 ∈ ℝ )
3 2 ex ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) → 𝑎 ∈ ℝ ) )
4 3 ssrdv ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell14QR ‘ 𝐷 ) ⊆ ℝ )
5 1 4 sstrid ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ⊆ ℝ )
6 pell1qrss14 ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) )
7 pellqrex ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ∃ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) 1 < 𝑎 )
8 ssrexv ( ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) → ( ∃ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) 1 < 𝑎 → ∃ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) 1 < 𝑎 ) )
9 6 7 8 sylc ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ∃ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) 1 < 𝑎 )
10 rabn0 ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ≠ ∅ ↔ ∃ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) 1 < 𝑎 )
11 9 10 sylibr ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ≠ ∅ )
12 eldifi ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℕ )
13 12 peano2nnd ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐷 + 1 ) ∈ ℕ )
14 13 nnrpd ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐷 + 1 ) ∈ ℝ+ )
15 14 rpsqrtcld ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( √ ‘ ( 𝐷 + 1 ) ) ∈ ℝ+ )
16 15 rpred ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( √ ‘ ( 𝐷 + 1 ) ) ∈ ℝ )
17 12 nnrpd ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℝ+ )
18 17 rpsqrtcld ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( √ ‘ 𝐷 ) ∈ ℝ+ )
19 18 rpred ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( √ ‘ 𝐷 ) ∈ ℝ )
20 16 19 readdcld ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ∈ ℝ )
21 breq2 ( 𝑎 = 𝑏 → ( 1 < 𝑎 ↔ 1 < 𝑏 ) )
22 21 elrab ( 𝑏 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ↔ ( 𝑏 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑏 ) )
23 pell14qrgap ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑏 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑏 ) → ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ≤ 𝑏 )
24 23 3expib ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 𝑏 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑏 ) → ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ≤ 𝑏 ) )
25 22 24 syl5bi ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑏 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } → ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ≤ 𝑏 ) )
26 25 ralrimiv ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ∀ 𝑏 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ≤ 𝑏 )
27 infmrgelbi ( ( ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ⊆ ℝ ∧ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ≠ ∅ ∧ ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ∈ ℝ ) ∧ ∀ 𝑏 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ≤ 𝑏 ) → ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ≤ inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) )
28 5 11 20 26 27 syl31anc ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ≤ inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) )
29 pellfundval ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) = inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) )
30 28 29 breqtrrd ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ≤ ( PellFund ‘ 𝐷 ) )