Step |
Hyp |
Ref |
Expression |
1 |
|
pellfundval |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) = inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → ( PellFund ‘ 𝐷 ) = inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) ) |
3 |
|
simp3 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → ( PellFund ‘ 𝐷 ) < 𝐴 ) |
4 |
2 3
|
eqbrtrrd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) < 𝐴 ) |
5 |
|
pellfundre |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ℝ ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → ( PellFund ‘ 𝐷 ) ∈ ℝ ) |
7 |
2 6
|
eqeltrrd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) ∈ ℝ ) |
8 |
|
simp2 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → 𝐴 ∈ ℝ ) |
9 |
7 8
|
ltnled |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → ( inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) < 𝐴 ↔ ¬ 𝐴 ≤ inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) ) ) |
10 |
4 9
|
mpbid |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → ¬ 𝐴 ≤ inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) ) |
11 |
|
ssrab2 |
⊢ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ⊆ ( Pell14QR ‘ 𝐷 ) |
12 |
|
pell14qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝑎 ∈ ℝ ) |
13 |
12
|
ex |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) → 𝑎 ∈ ℝ ) ) |
14 |
13
|
ssrdv |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell14QR ‘ 𝐷 ) ⊆ ℝ ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → ( Pell14QR ‘ 𝐷 ) ⊆ ℝ ) |
16 |
11 15
|
sstrid |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ⊆ ℝ ) |
17 |
|
pell1qrss14 |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) ) |
18 |
17
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) ) |
19 |
|
pellqrex |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ∃ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) 1 < 𝑎 ) |
20 |
19
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → ∃ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) 1 < 𝑎 ) |
21 |
|
ssrexv |
⊢ ( ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) → ( ∃ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) 1 < 𝑎 → ∃ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) 1 < 𝑎 ) ) |
22 |
18 20 21
|
sylc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → ∃ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) 1 < 𝑎 ) |
23 |
|
rabn0 |
⊢ ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ≠ ∅ ↔ ∃ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) 1 < 𝑎 ) |
24 |
22 23
|
sylibr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ≠ ∅ ) |
25 |
|
infmrgelbi |
⊢ ( ( ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ⊆ ℝ ∧ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ≠ ∅ ∧ 𝐴 ∈ ℝ ) ∧ ∀ 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 𝐴 ≤ 𝑥 ) → 𝐴 ≤ inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) ) |
26 |
25
|
ex |
⊢ ( ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ⊆ ℝ ∧ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ≠ ∅ ∧ 𝐴 ∈ ℝ ) → ( ∀ 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 𝐴 ≤ 𝑥 → 𝐴 ≤ inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) ) ) |
27 |
16 24 8 26
|
syl3anc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → ( ∀ 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 𝐴 ≤ 𝑥 → 𝐴 ≤ inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) ) ) |
28 |
10 27
|
mtod |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → ¬ ∀ 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 𝐴 ≤ 𝑥 ) |
29 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ¬ 𝐴 ≤ 𝑥 ↔ ¬ ∀ 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 𝐴 ≤ 𝑥 ) |
30 |
28 29
|
sylibr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → ∃ 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ¬ 𝐴 ≤ 𝑥 ) |
31 |
|
breq2 |
⊢ ( 𝑎 = 𝑥 → ( 1 < 𝑎 ↔ 1 < 𝑥 ) ) |
32 |
31
|
elrab |
⊢ ( 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ↔ ( 𝑥 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑥 ) ) |
33 |
|
simprl |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑥 ) ) → 𝑥 ∈ ( Pell14QR ‘ 𝐷 ) ) |
34 |
|
1red |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑥 ) ) → 1 ∈ ℝ ) |
35 |
|
simpl1 |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑥 ) ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) ) |
36 |
|
pell14qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑥 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝑥 ∈ ℝ ) |
37 |
35 33 36
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑥 ) ) → 𝑥 ∈ ℝ ) |
38 |
|
simprr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑥 ) ) → 1 < 𝑥 ) |
39 |
34 37 38
|
ltled |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑥 ) ) → 1 ≤ 𝑥 ) |
40 |
33 39
|
jca |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑥 ) ) → ( 𝑥 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 ≤ 𝑥 ) ) |
41 |
|
elpell1qr2 |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑥 ∈ ( Pell1QR ‘ 𝐷 ) ↔ ( 𝑥 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 ≤ 𝑥 ) ) ) |
42 |
35 41
|
syl |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑥 ) ) → ( 𝑥 ∈ ( Pell1QR ‘ 𝐷 ) ↔ ( 𝑥 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 ≤ 𝑥 ) ) ) |
43 |
40 42
|
mpbird |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑥 ) ) → 𝑥 ∈ ( Pell1QR ‘ 𝐷 ) ) |
44 |
32 43
|
sylan2b |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ) → 𝑥 ∈ ( Pell1QR ‘ 𝐷 ) ) |
45 |
44
|
adantrr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ∧ ¬ 𝐴 ≤ 𝑥 ) ) → 𝑥 ∈ ( Pell1QR ‘ 𝐷 ) ) |
46 |
|
simpl1 |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ∧ ¬ 𝐴 ≤ 𝑥 ) ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) ) |
47 |
|
simprl |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ∧ ¬ 𝐴 ≤ 𝑥 ) ) → 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ) |
48 |
11 47
|
sselid |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ∧ ¬ 𝐴 ≤ 𝑥 ) ) → 𝑥 ∈ ( Pell14QR ‘ 𝐷 ) ) |
49 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑥 ) → 1 < 𝑥 ) |
50 |
49
|
a1i |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → ( ( 𝑥 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑥 ) → 1 < 𝑥 ) ) |
51 |
32 50
|
syl5bi |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → ( 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } → 1 < 𝑥 ) ) |
52 |
51
|
imp |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ) → 1 < 𝑥 ) |
53 |
52
|
adantrr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ∧ ¬ 𝐴 ≤ 𝑥 ) ) → 1 < 𝑥 ) |
54 |
|
pellfundlb |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑥 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑥 ) → ( PellFund ‘ 𝐷 ) ≤ 𝑥 ) |
55 |
46 48 53 54
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ∧ ¬ 𝐴 ≤ 𝑥 ) ) → ( PellFund ‘ 𝐷 ) ≤ 𝑥 ) |
56 |
|
simprr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ∧ ¬ 𝐴 ≤ 𝑥 ) ) → ¬ 𝐴 ≤ 𝑥 ) |
57 |
15
|
adantr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ∧ ¬ 𝐴 ≤ 𝑥 ) ) → ( Pell14QR ‘ 𝐷 ) ⊆ ℝ ) |
58 |
57 48
|
sseldd |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ∧ ¬ 𝐴 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
59 |
|
simpl2 |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ∧ ¬ 𝐴 ≤ 𝑥 ) ) → 𝐴 ∈ ℝ ) |
60 |
58 59
|
ltnled |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ∧ ¬ 𝐴 ≤ 𝑥 ) ) → ( 𝑥 < 𝐴 ↔ ¬ 𝐴 ≤ 𝑥 ) ) |
61 |
56 60
|
mpbird |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ∧ ¬ 𝐴 ≤ 𝑥 ) ) → 𝑥 < 𝐴 ) |
62 |
55 61
|
jca |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) ∧ ( 𝑥 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ∧ ¬ 𝐴 ≤ 𝑥 ) ) → ( ( PellFund ‘ 𝐷 ) ≤ 𝑥 ∧ 𝑥 < 𝐴 ) ) |
63 |
30 45 62
|
reximssdv |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝐴 ) → ∃ 𝑥 ∈ ( Pell1QR ‘ 𝐷 ) ( ( PellFund ‘ 𝐷 ) ≤ 𝑥 ∧ 𝑥 < 𝐴 ) ) |