| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1red | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  1  ∈  ℝ ) | 
						
							| 2 |  | eldifi | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  𝐷  ∈  ℕ ) | 
						
							| 3 | 2 | peano2nnd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐷  +  1 )  ∈  ℕ ) | 
						
							| 4 | 3 | nnrpd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐷  +  1 )  ∈  ℝ+ ) | 
						
							| 5 | 4 | rpsqrtcld | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( √ ‘ ( 𝐷  +  1 ) )  ∈  ℝ+ ) | 
						
							| 6 | 5 | rpred | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( √ ‘ ( 𝐷  +  1 ) )  ∈  ℝ ) | 
						
							| 7 | 2 | nnrpd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  𝐷  ∈  ℝ+ ) | 
						
							| 8 | 7 | rpsqrtcld | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( √ ‘ 𝐷 )  ∈  ℝ+ ) | 
						
							| 9 | 8 | rpred | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( √ ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 10 | 6 9 | readdcld | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ∈  ℝ ) | 
						
							| 11 |  | pellfundre | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( PellFund ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 12 |  | sqrt1 | ⊢ ( √ ‘ 1 )  =  1 | 
						
							| 13 | 12 1 | eqeltrid | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( √ ‘ 1 )  ∈  ℝ ) | 
						
							| 14 | 13 13 | readdcld | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( √ ‘ 1 )  +  ( √ ‘ 1 ) )  ∈  ℝ ) | 
						
							| 15 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 16 | 12 12 | oveq12i | ⊢ ( ( √ ‘ 1 )  +  ( √ ‘ 1 ) )  =  ( 1  +  1 ) | 
						
							| 17 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 18 | 16 17 | eqtri | ⊢ ( ( √ ‘ 1 )  +  ( √ ‘ 1 ) )  =  2 | 
						
							| 19 | 15 18 | breqtrri | ⊢ 1  <  ( ( √ ‘ 1 )  +  ( √ ‘ 1 ) ) | 
						
							| 20 | 19 | a1i | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  1  <  ( ( √ ‘ 1 )  +  ( √ ‘ 1 ) ) ) | 
						
							| 21 | 3 | nnge1d | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  1  ≤  ( 𝐷  +  1 ) ) | 
						
							| 22 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 23 | 22 | a1i | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  0  ≤  1 ) | 
						
							| 24 | 2 | nnred | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  𝐷  ∈  ℝ ) | 
						
							| 25 |  | peano2re | ⊢ ( 𝐷  ∈  ℝ  →  ( 𝐷  +  1 )  ∈  ℝ ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐷  +  1 )  ∈  ℝ ) | 
						
							| 27 | 3 | nnnn0d | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐷  +  1 )  ∈  ℕ0 ) | 
						
							| 28 | 27 | nn0ge0d | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  0  ≤  ( 𝐷  +  1 ) ) | 
						
							| 29 | 1 23 26 28 | sqrtled | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 1  ≤  ( 𝐷  +  1 )  ↔  ( √ ‘ 1 )  ≤  ( √ ‘ ( 𝐷  +  1 ) ) ) ) | 
						
							| 30 | 21 29 | mpbid | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( √ ‘ 1 )  ≤  ( √ ‘ ( 𝐷  +  1 ) ) ) | 
						
							| 31 | 2 | nnge1d | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  1  ≤  𝐷 ) | 
						
							| 32 | 2 | nnnn0d | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  𝐷  ∈  ℕ0 ) | 
						
							| 33 | 32 | nn0ge0d | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  0  ≤  𝐷 ) | 
						
							| 34 | 1 23 24 33 | sqrtled | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 1  ≤  𝐷  ↔  ( √ ‘ 1 )  ≤  ( √ ‘ 𝐷 ) ) ) | 
						
							| 35 | 31 34 | mpbid | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( √ ‘ 1 )  ≤  ( √ ‘ 𝐷 ) ) | 
						
							| 36 | 13 13 6 9 30 35 | le2addd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( √ ‘ 1 )  +  ( √ ‘ 1 ) )  ≤  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) ) ) | 
						
							| 37 | 1 14 10 20 36 | ltletrd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  1  <  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) ) ) | 
						
							| 38 |  | pellfundge | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  ( PellFund ‘ 𝐷 ) ) | 
						
							| 39 | 1 10 11 37 38 | ltletrd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  1  <  ( PellFund ‘ 𝐷 ) ) |