| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pellfundval | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( PellFund ‘ 𝐷 )  =  inf ( { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } ,  ℝ ,   <  ) ) | 
						
							| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( PellFund ‘ 𝐷 )  =  inf ( { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } ,  ℝ ,   <  ) ) | 
						
							| 3 |  | ssrab2 | ⊢ { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ⊆  ( Pell14QR ‘ 𝐷 ) | 
						
							| 4 |  | pell14qrre | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝑑  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝑑  ∈  ℝ ) | 
						
							| 5 | 4 | ex | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝑑  ∈  ( Pell14QR ‘ 𝐷 )  →  𝑑  ∈  ℝ ) ) | 
						
							| 6 | 5 | ssrdv | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( Pell14QR ‘ 𝐷 )  ⊆  ℝ ) | 
						
							| 7 | 3 6 | sstrid | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ⊆  ℝ ) | 
						
							| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ⊆  ℝ ) | 
						
							| 9 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 10 |  | breq2 | ⊢ ( 𝑎  =  𝑐  →  ( 1  <  𝑎  ↔  1  <  𝑐 ) ) | 
						
							| 11 | 10 | elrab | ⊢ ( 𝑐  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ↔  ( 𝑐  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝑐 ) ) | 
						
							| 12 |  | pell14qrre | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝑐  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝑐  ∈  ℝ ) | 
						
							| 13 |  | ltle | ⊢ ( ( 1  ∈  ℝ  ∧  𝑐  ∈  ℝ )  →  ( 1  <  𝑐  →  1  ≤  𝑐 ) ) | 
						
							| 14 | 9 12 13 | sylancr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝑐  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 1  <  𝑐  →  1  ≤  𝑐 ) ) | 
						
							| 15 | 14 | expimpd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( 𝑐  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝑐 )  →  1  ≤  𝑐 ) ) | 
						
							| 16 | 11 15 | biimtrid | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝑐  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  →  1  ≤  𝑐 ) ) | 
						
							| 17 | 16 | ralrimiv | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ∀ 𝑐  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } 1  ≤  𝑐 ) | 
						
							| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ∀ 𝑐  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } 1  ≤  𝑐 ) | 
						
							| 19 |  | breq1 | ⊢ ( 𝑏  =  1  →  ( 𝑏  ≤  𝑐  ↔  1  ≤  𝑐 ) ) | 
						
							| 20 | 19 | ralbidv | ⊢ ( 𝑏  =  1  →  ( ∀ 𝑐  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } 𝑏  ≤  𝑐  ↔  ∀ 𝑐  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } 1  ≤  𝑐 ) ) | 
						
							| 21 | 20 | rspcev | ⊢ ( ( 1  ∈  ℝ  ∧  ∀ 𝑐  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } 1  ≤  𝑐 )  →  ∃ 𝑏  ∈  ℝ ∀ 𝑐  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } 𝑏  ≤  𝑐 ) | 
						
							| 22 | 9 18 21 | sylancr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ∃ 𝑏  ∈  ℝ ∀ 𝑐  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } 𝑏  ≤  𝑐 ) | 
						
							| 23 |  | simp2 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 24 |  | simp3 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  1  <  𝐴 ) | 
						
							| 25 |  | breq2 | ⊢ ( 𝑎  =  𝐴  →  ( 1  <  𝑎  ↔  1  <  𝐴 ) ) | 
						
							| 26 | 25 | elrab | ⊢ ( 𝐴  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ↔  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 ) ) | 
						
							| 27 | 23 24 26 | sylanbrc | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  𝐴  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } ) | 
						
							| 28 |  | infrelb | ⊢ ( ( { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ⊆  ℝ  ∧  ∃ 𝑏  ∈  ℝ ∀ 𝑐  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } 𝑏  ≤  𝑐  ∧  𝐴  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } )  →  inf ( { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } ,  ℝ ,   <  )  ≤  𝐴 ) | 
						
							| 29 | 8 22 27 28 | syl3anc | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  inf ( { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } ,  ℝ ,   <  )  ≤  𝐴 ) | 
						
							| 30 | 2 29 | eqbrtrd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( PellFund ‘ 𝐷 )  ≤  𝐴 ) |