Step |
Hyp |
Ref |
Expression |
1 |
|
pellfundval |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) = inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( PellFund ‘ 𝐷 ) = inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) ) |
3 |
|
ssrab2 |
⊢ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ⊆ ( Pell14QR ‘ 𝐷 ) |
4 |
|
pell14qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑑 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝑑 ∈ ℝ ) |
5 |
4
|
ex |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑑 ∈ ( Pell14QR ‘ 𝐷 ) → 𝑑 ∈ ℝ ) ) |
6 |
5
|
ssrdv |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell14QR ‘ 𝐷 ) ⊆ ℝ ) |
7 |
3 6
|
sstrid |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ⊆ ℝ ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ⊆ ℝ ) |
9 |
|
1re |
⊢ 1 ∈ ℝ |
10 |
|
breq2 |
⊢ ( 𝑎 = 𝑐 → ( 1 < 𝑎 ↔ 1 < 𝑐 ) ) |
11 |
10
|
elrab |
⊢ ( 𝑐 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ↔ ( 𝑐 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑐 ) ) |
12 |
|
pell14qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑐 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝑐 ∈ ℝ ) |
13 |
|
ltle |
⊢ ( ( 1 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( 1 < 𝑐 → 1 ≤ 𝑐 ) ) |
14 |
9 12 13
|
sylancr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑐 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 1 < 𝑐 → 1 ≤ 𝑐 ) ) |
15 |
14
|
expimpd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 𝑐 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑐 ) → 1 ≤ 𝑐 ) ) |
16 |
11 15
|
syl5bi |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑐 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } → 1 ≤ 𝑐 ) ) |
17 |
16
|
ralrimiv |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ∀ 𝑐 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 1 ≤ 𝑐 ) |
18 |
17
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ∀ 𝑐 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 1 ≤ 𝑐 ) |
19 |
|
breq1 |
⊢ ( 𝑏 = 1 → ( 𝑏 ≤ 𝑐 ↔ 1 ≤ 𝑐 ) ) |
20 |
19
|
ralbidv |
⊢ ( 𝑏 = 1 → ( ∀ 𝑐 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 𝑏 ≤ 𝑐 ↔ ∀ 𝑐 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 1 ≤ 𝑐 ) ) |
21 |
20
|
rspcev |
⊢ ( ( 1 ∈ ℝ ∧ ∀ 𝑐 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 1 ≤ 𝑐 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑐 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 𝑏 ≤ 𝑐 ) |
22 |
9 18 21
|
sylancr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑐 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 𝑏 ≤ 𝑐 ) |
23 |
|
simp2 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) |
24 |
|
simp3 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 1 < 𝐴 ) |
25 |
|
breq2 |
⊢ ( 𝑎 = 𝐴 → ( 1 < 𝑎 ↔ 1 < 𝐴 ) ) |
26 |
25
|
elrab |
⊢ ( 𝐴 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ↔ ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) ) |
27 |
23 24 26
|
sylanbrc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 𝐴 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ) |
28 |
|
infrelb |
⊢ ( ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ⊆ ℝ ∧ ∃ 𝑏 ∈ ℝ ∀ 𝑐 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 𝑏 ≤ 𝑐 ∧ 𝐴 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ) → inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) ≤ 𝐴 ) |
29 |
8 22 27 28
|
syl3anc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) ≤ 𝐴 ) |
30 |
2 29
|
eqbrtrd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( PellFund ‘ 𝐷 ) ≤ 𝐴 ) |