Metamath Proof Explorer


Theorem pellfundne1

Description: The fundamental Pell solution is never 1. (Contributed by Stefan O'Rear, 19-Sep-2014)

Ref Expression
Assertion pellfundne1 ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ≠ 1 )

Proof

Step Hyp Ref Expression
1 1red ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 ∈ ℝ )
2 pellfundgt1 ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 < ( PellFund ‘ 𝐷 ) )
3 1 2 gtned ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ≠ 1 )