| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pellfundval | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( PellFund ‘ 𝐷 )  =  inf ( { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } ,  ℝ ,   <  ) ) | 
						
							| 2 |  | ssrab2 | ⊢ { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ⊆  ( Pell14QR ‘ 𝐷 ) | 
						
							| 3 |  | pell14qrre | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝑎  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝑎  ∈  ℝ ) | 
						
							| 4 | 3 | ex | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  →  𝑎  ∈  ℝ ) ) | 
						
							| 5 | 4 | ssrdv | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( Pell14QR ‘ 𝐷 )  ⊆  ℝ ) | 
						
							| 6 | 2 5 | sstrid | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ⊆  ℝ ) | 
						
							| 7 |  | pell1qrss14 | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( Pell1QR ‘ 𝐷 )  ⊆  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 8 |  | pellqrex | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ∃ 𝑎  ∈  ( Pell1QR ‘ 𝐷 ) 1  <  𝑎 ) | 
						
							| 9 |  | ssrexv | ⊢ ( ( Pell1QR ‘ 𝐷 )  ⊆  ( Pell14QR ‘ 𝐷 )  →  ( ∃ 𝑎  ∈  ( Pell1QR ‘ 𝐷 ) 1  <  𝑎  →  ∃ 𝑎  ∈  ( Pell14QR ‘ 𝐷 ) 1  <  𝑎 ) ) | 
						
							| 10 | 7 8 9 | sylc | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ∃ 𝑎  ∈  ( Pell14QR ‘ 𝐷 ) 1  <  𝑎 ) | 
						
							| 11 |  | rabn0 | ⊢ ( { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ≠  ∅  ↔  ∃ 𝑎  ∈  ( Pell14QR ‘ 𝐷 ) 1  <  𝑎 ) | 
						
							| 12 | 10 11 | sylibr | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ≠  ∅ ) | 
						
							| 13 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 14 |  | breq2 | ⊢ ( 𝑎  =  𝑐  →  ( 1  <  𝑎  ↔  1  <  𝑐 ) ) | 
						
							| 15 | 14 | elrab | ⊢ ( 𝑐  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ↔  ( 𝑐  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝑐 ) ) | 
						
							| 16 |  | pell14qrre | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝑐  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝑐  ∈  ℝ ) | 
						
							| 17 |  | ltle | ⊢ ( ( 1  ∈  ℝ  ∧  𝑐  ∈  ℝ )  →  ( 1  <  𝑐  →  1  ≤  𝑐 ) ) | 
						
							| 18 | 13 16 17 | sylancr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝑐  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 1  <  𝑐  →  1  ≤  𝑐 ) ) | 
						
							| 19 | 18 | expimpd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( 𝑐  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝑐 )  →  1  ≤  𝑐 ) ) | 
						
							| 20 | 15 19 | biimtrid | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝑐  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  →  1  ≤  𝑐 ) ) | 
						
							| 21 | 20 | ralrimiv | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ∀ 𝑐  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } 1  ≤  𝑐 ) | 
						
							| 22 |  | breq1 | ⊢ ( 𝑏  =  1  →  ( 𝑏  ≤  𝑐  ↔  1  ≤  𝑐 ) ) | 
						
							| 23 | 22 | ralbidv | ⊢ ( 𝑏  =  1  →  ( ∀ 𝑐  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } 𝑏  ≤  𝑐  ↔  ∀ 𝑐  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } 1  ≤  𝑐 ) ) | 
						
							| 24 | 23 | rspcev | ⊢ ( ( 1  ∈  ℝ  ∧  ∀ 𝑐  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } 1  ≤  𝑐 )  →  ∃ 𝑏  ∈  ℝ ∀ 𝑐  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } 𝑏  ≤  𝑐 ) | 
						
							| 25 | 13 21 24 | sylancr | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ∃ 𝑏  ∈  ℝ ∀ 𝑐  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } 𝑏  ≤  𝑐 ) | 
						
							| 26 |  | infrecl | ⊢ ( ( { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ⊆  ℝ  ∧  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ≠  ∅  ∧  ∃ 𝑏  ∈  ℝ ∀ 𝑐  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } 𝑏  ≤  𝑐 )  →  inf ( { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 27 | 6 12 25 26 | syl3anc | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  inf ( { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 28 | 1 27 | eqeltrd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( PellFund ‘ 𝐷 )  ∈  ℝ ) |