Metamath Proof Explorer


Theorem pellfundrp

Description: The fundamental Pell solution is a positive real. (Contributed by Stefan O'Rear, 19-Sep-2014)

Ref Expression
Assertion pellfundrp ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 pellfundre ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ℝ )
2 0red ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 0 ∈ ℝ )
3 1red ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 ∈ ℝ )
4 0lt1 0 < 1
5 4 a1i ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 0 < 1 )
6 pellfundgt1 ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 < ( PellFund ‘ 𝐷 ) )
7 2 3 1 5 6 lttrd ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 0 < ( PellFund ‘ 𝐷 ) )
8 1 7 elrpd ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ℝ+ )