| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifi |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℕ ) |
| 2 |
|
eldifn |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ¬ 𝐷 ∈ ◻NN ) |
| 3 |
1
|
anim1i |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( 𝐷 ∈ ℕ ∧ ( √ ‘ 𝐷 ) ∈ ℚ ) ) |
| 4 |
|
fveq2 |
⊢ ( 𝑎 = 𝐷 → ( √ ‘ 𝑎 ) = ( √ ‘ 𝐷 ) ) |
| 5 |
4
|
eleq1d |
⊢ ( 𝑎 = 𝐷 → ( ( √ ‘ 𝑎 ) ∈ ℚ ↔ ( √ ‘ 𝐷 ) ∈ ℚ ) ) |
| 6 |
|
df-squarenn |
⊢ ◻NN = { 𝑎 ∈ ℕ ∣ ( √ ‘ 𝑎 ) ∈ ℚ } |
| 7 |
5 6
|
elrab2 |
⊢ ( 𝐷 ∈ ◻NN ↔ ( 𝐷 ∈ ℕ ∧ ( √ ‘ 𝐷 ) ∈ ℚ ) ) |
| 8 |
3 7
|
sylibr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( √ ‘ 𝐷 ) ∈ ℚ ) → 𝐷 ∈ ◻NN ) |
| 9 |
2 8
|
mtand |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) |
| 10 |
|
pellex |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ∃ 𝑐 ∈ ℕ ∃ 𝑑 ∈ ℕ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑑 ↑ 2 ) ) ) = 1 ) |
| 11 |
1 9 10
|
syl2anc |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ∃ 𝑐 ∈ ℕ ∃ 𝑑 ∈ ℕ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑑 ↑ 2 ) ) ) = 1 ) |
| 12 |
|
simpll |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑑 ↑ 2 ) ) ) = 1 ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) ) |
| 13 |
|
nnnn0 |
⊢ ( 𝑐 ∈ ℕ → 𝑐 ∈ ℕ0 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → 𝑐 ∈ ℕ0 ) |
| 15 |
14
|
ad2antlr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑑 ↑ 2 ) ) ) = 1 ) → 𝑐 ∈ ℕ0 ) |
| 16 |
|
nnnn0 |
⊢ ( 𝑑 ∈ ℕ → 𝑑 ∈ ℕ0 ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → 𝑑 ∈ ℕ0 ) |
| 18 |
17
|
ad2antlr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑑 ↑ 2 ) ) ) = 1 ) → 𝑑 ∈ ℕ0 ) |
| 19 |
|
simpr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑑 ↑ 2 ) ) ) = 1 ) → ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑑 ↑ 2 ) ) ) = 1 ) |
| 20 |
|
pellqrexplicit |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑑 ↑ 2 ) ) ) = 1 ) → ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑑 ) ) ∈ ( Pell1QR ‘ 𝐷 ) ) |
| 21 |
12 15 18 19 20
|
syl31anc |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑑 ↑ 2 ) ) ) = 1 ) → ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑑 ) ) ∈ ( Pell1QR ‘ 𝐷 ) ) |
| 22 |
|
1re |
⊢ 1 ∈ ℝ |
| 23 |
22
|
a1i |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → 1 ∈ ℝ ) |
| 24 |
22 22
|
readdcli |
⊢ ( 1 + 1 ) ∈ ℝ |
| 25 |
24
|
a1i |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( 1 + 1 ) ∈ ℝ ) |
| 26 |
|
nnre |
⊢ ( 𝑐 ∈ ℕ → 𝑐 ∈ ℝ ) |
| 27 |
26
|
ad2antrl |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → 𝑐 ∈ ℝ ) |
| 28 |
1
|
adantr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → 𝐷 ∈ ℕ ) |
| 29 |
28
|
nnrpd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → 𝐷 ∈ ℝ+ ) |
| 30 |
29
|
rpsqrtcld |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( √ ‘ 𝐷 ) ∈ ℝ+ ) |
| 31 |
30
|
rpred |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( √ ‘ 𝐷 ) ∈ ℝ ) |
| 32 |
|
nnre |
⊢ ( 𝑑 ∈ ℕ → 𝑑 ∈ ℝ ) |
| 33 |
32
|
ad2antll |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → 𝑑 ∈ ℝ ) |
| 34 |
31 33
|
remulcld |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ( √ ‘ 𝐷 ) · 𝑑 ) ∈ ℝ ) |
| 35 |
27 34
|
readdcld |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑑 ) ) ∈ ℝ ) |
| 36 |
22
|
ltp1i |
⊢ 1 < ( 1 + 1 ) |
| 37 |
36
|
a1i |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → 1 < ( 1 + 1 ) ) |
| 38 |
|
nnge1 |
⊢ ( 𝑐 ∈ ℕ → 1 ≤ 𝑐 ) |
| 39 |
38
|
ad2antrl |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → 1 ≤ 𝑐 ) |
| 40 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
| 41 |
|
nnge1 |
⊢ ( 𝐷 ∈ ℕ → 1 ≤ 𝐷 ) |
| 42 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 43 |
42
|
a1i |
⊢ ( 𝐷 ∈ ℕ → ( 1 ↑ 2 ) = 1 ) |
| 44 |
|
nncn |
⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℂ ) |
| 45 |
44
|
sqsqrtd |
⊢ ( 𝐷 ∈ ℕ → ( ( √ ‘ 𝐷 ) ↑ 2 ) = 𝐷 ) |
| 46 |
41 43 45
|
3brtr4d |
⊢ ( 𝐷 ∈ ℕ → ( 1 ↑ 2 ) ≤ ( ( √ ‘ 𝐷 ) ↑ 2 ) ) |
| 47 |
22
|
a1i |
⊢ ( 𝐷 ∈ ℕ → 1 ∈ ℝ ) |
| 48 |
|
nnrp |
⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℝ+ ) |
| 49 |
48
|
rpsqrtcld |
⊢ ( 𝐷 ∈ ℕ → ( √ ‘ 𝐷 ) ∈ ℝ+ ) |
| 50 |
49
|
rpred |
⊢ ( 𝐷 ∈ ℕ → ( √ ‘ 𝐷 ) ∈ ℝ ) |
| 51 |
|
0le1 |
⊢ 0 ≤ 1 |
| 52 |
51
|
a1i |
⊢ ( 𝐷 ∈ ℕ → 0 ≤ 1 ) |
| 53 |
49
|
rpge0d |
⊢ ( 𝐷 ∈ ℕ → 0 ≤ ( √ ‘ 𝐷 ) ) |
| 54 |
47 50 52 53
|
le2sqd |
⊢ ( 𝐷 ∈ ℕ → ( 1 ≤ ( √ ‘ 𝐷 ) ↔ ( 1 ↑ 2 ) ≤ ( ( √ ‘ 𝐷 ) ↑ 2 ) ) ) |
| 55 |
46 54
|
mpbird |
⊢ ( 𝐷 ∈ ℕ → 1 ≤ ( √ ‘ 𝐷 ) ) |
| 56 |
28 55
|
syl |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → 1 ≤ ( √ ‘ 𝐷 ) ) |
| 57 |
|
nnge1 |
⊢ ( 𝑑 ∈ ℕ → 1 ≤ 𝑑 ) |
| 58 |
57
|
ad2antll |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → 1 ≤ 𝑑 ) |
| 59 |
23 51
|
jctir |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ) |
| 60 |
|
lemul12a |
⊢ ( ( ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ ( √ ‘ 𝐷 ) ∈ ℝ ) ∧ ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ 𝑑 ∈ ℝ ) ) → ( ( 1 ≤ ( √ ‘ 𝐷 ) ∧ 1 ≤ 𝑑 ) → ( 1 · 1 ) ≤ ( ( √ ‘ 𝐷 ) · 𝑑 ) ) ) |
| 61 |
59 31 59 33 60
|
syl22anc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ( 1 ≤ ( √ ‘ 𝐷 ) ∧ 1 ≤ 𝑑 ) → ( 1 · 1 ) ≤ ( ( √ ‘ 𝐷 ) · 𝑑 ) ) ) |
| 62 |
56 58 61
|
mp2and |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( 1 · 1 ) ≤ ( ( √ ‘ 𝐷 ) · 𝑑 ) ) |
| 63 |
40 62
|
eqbrtrrid |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → 1 ≤ ( ( √ ‘ 𝐷 ) · 𝑑 ) ) |
| 64 |
23 23 27 34 39 63
|
le2addd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( 1 + 1 ) ≤ ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑑 ) ) ) |
| 65 |
23 25 35 37 64
|
ltletrd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → 1 < ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑑 ) ) ) |
| 66 |
65
|
adantr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑑 ↑ 2 ) ) ) = 1 ) → 1 < ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑑 ) ) ) |
| 67 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑑 ) ) → ( 1 < 𝑥 ↔ 1 < ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑑 ) ) ) ) |
| 68 |
67
|
rspcev |
⊢ ( ( ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑑 ) ) ∈ ( Pell1QR ‘ 𝐷 ) ∧ 1 < ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑑 ) ) ) → ∃ 𝑥 ∈ ( Pell1QR ‘ 𝐷 ) 1 < 𝑥 ) |
| 69 |
21 66 68
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑑 ↑ 2 ) ) ) = 1 ) → ∃ 𝑥 ∈ ( Pell1QR ‘ 𝐷 ) 1 < 𝑥 ) |
| 70 |
69
|
ex |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑑 ↑ 2 ) ) ) = 1 → ∃ 𝑥 ∈ ( Pell1QR ‘ 𝐷 ) 1 < 𝑥 ) ) |
| 71 |
70
|
rexlimdvva |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ∃ 𝑐 ∈ ℕ ∃ 𝑑 ∈ ℕ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑑 ↑ 2 ) ) ) = 1 → ∃ 𝑥 ∈ ( Pell1QR ‘ 𝐷 ) 1 < 𝑥 ) ) |
| 72 |
11 71
|
mpd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ∃ 𝑥 ∈ ( Pell1QR ‘ 𝐷 ) 1 < 𝑥 ) |