Step |
Hyp |
Ref |
Expression |
1 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
2 |
1
|
3ad2ant2 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
3 |
|
eldifi |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℕ ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → 𝐷 ∈ ℕ ) |
5 |
4
|
nnrpd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → 𝐷 ∈ ℝ+ ) |
6 |
5
|
rpsqrtcld |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( √ ‘ 𝐷 ) ∈ ℝ+ ) |
7 |
6
|
rpred |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( √ ‘ 𝐷 ) ∈ ℝ ) |
8 |
|
nn0re |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → 𝐵 ∈ ℝ ) |
10 |
7 9
|
remulcld |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( √ ‘ 𝐷 ) · 𝐵 ) ∈ ℝ ) |
11 |
2 10
|
readdcld |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) ∈ ℝ ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) = 1 ) → ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) ∈ ℝ ) |
13 |
|
simpl2 |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) = 1 ) → 𝐴 ∈ ℕ0 ) |
14 |
|
simpl3 |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) = 1 ) → 𝐵 ∈ ℕ0 ) |
15 |
|
eqidd |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) = 1 ) → ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) = ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) ) |
16 |
|
simpr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) = 1 ) → ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) = 1 ) |
17 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
18 |
17
|
eqeq2d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ↔ ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) = ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) ) |
19 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
20 |
19
|
oveq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) ) |
21 |
20
|
eqeq1d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ↔ ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) |
22 |
18 21
|
anbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ↔ ( ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) = ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) |
23 |
|
oveq2 |
⊢ ( 𝑏 = 𝐵 → ( ( √ ‘ 𝐷 ) · 𝑏 ) = ( ( √ ‘ 𝐷 ) · 𝐵 ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝑏 = 𝐵 → ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) ) |
25 |
24
|
eqeq2d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) = ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ↔ ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) = ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) ) ) |
26 |
|
oveq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ↑ 2 ) = ( 𝐵 ↑ 2 ) ) |
27 |
26
|
oveq2d |
⊢ ( 𝑏 = 𝐵 → ( 𝐷 · ( 𝑏 ↑ 2 ) ) = ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) |
28 |
27
|
oveq2d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) ) |
29 |
28
|
eqeq1d |
⊢ ( 𝑏 = 𝐵 → ( ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ↔ ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) = 1 ) ) |
30 |
25 29
|
anbi12d |
⊢ ( 𝑏 = 𝐵 → ( ( ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) = ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ↔ ( ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) = ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) ∧ ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) = 1 ) ) ) |
31 |
22 30
|
rspc2ev |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) = ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) ∧ ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) = 1 ) ) → ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) |
32 |
13 14 15 16 31
|
syl112anc |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) = 1 ) → ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) |
33 |
|
elpell1qr |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) ∈ ( Pell1QR ‘ 𝐷 ) ↔ ( ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) ) |
34 |
33
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) ∈ ( Pell1QR ‘ 𝐷 ) ↔ ( ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) = 1 ) → ( ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) ∈ ( Pell1QR ‘ 𝐷 ) ↔ ( ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) ) |
36 |
12 32 35
|
mpbir2and |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) = 1 ) → ( 𝐴 + ( ( √ ‘ 𝐷 ) · 𝐵 ) ) ∈ ( Pell1QR ‘ 𝐷 ) ) |