Step |
Hyp |
Ref |
Expression |
1 |
|
lpcls.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
lpcls |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) |
3 |
2
|
sseq2d |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
4 |
|
t1top |
⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ Top ) |
5 |
1
|
clslp |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
6 |
4 5
|
sylan |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
7 |
6
|
sseq1d |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
8 |
|
ssequn1 |
⊢ ( 𝑆 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) = ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) |
9 |
|
ssun2 |
⊢ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) |
10 |
|
eqss |
⊢ ( ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) = ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
11 |
9 10
|
mpbiran2 |
⊢ ( ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) = ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) |
12 |
8 11
|
bitri |
⊢ ( 𝑆 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) |
13 |
7 12
|
bitr4di |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑆 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
14 |
3 13
|
bitr2d |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
15 |
|
eqid |
⊢ ( 𝐽 ↾t 𝑆 ) = ( 𝐽 ↾t 𝑆 ) |
16 |
1 15
|
restperf |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐽 ↾t 𝑆 ) ∈ Perf ↔ 𝑆 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
17 |
4 16
|
sylan |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐽 ↾t 𝑆 ) ∈ Perf ↔ 𝑆 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
18 |
1
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
19 |
|
eqid |
⊢ ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
20 |
1 19
|
restperf |
⊢ ( ( 𝐽 ∈ Top ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) → ( ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ Perf ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
21 |
18 20
|
syldan |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ Perf ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
22 |
4 21
|
sylan |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ Perf ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
23 |
14 17 22
|
3bitr4d |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐽 ↾t 𝑆 ) ∈ Perf ↔ ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ Perf ) ) |