| Step |
Hyp |
Ref |
Expression |
| 1 |
|
perfdvf.1 |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
| 2 |
|
df-dv |
⊢ D = ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |
| 3 |
2
|
dmmpossx |
⊢ dom D ⊆ ∪ 𝑠 ∈ 𝒫 ℂ ( { 𝑠 } × ( ℂ ↑pm 𝑠 ) ) |
| 4 |
|
simpl |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → 〈 𝑆 , 𝐹 〉 ∈ dom D ) |
| 5 |
3 4
|
sselid |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → 〈 𝑆 , 𝐹 〉 ∈ ∪ 𝑠 ∈ 𝒫 ℂ ( { 𝑠 } × ( ℂ ↑pm 𝑠 ) ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑠 = 𝑆 → ( ℂ ↑pm 𝑠 ) = ( ℂ ↑pm 𝑆 ) ) |
| 7 |
6
|
opeliunxp2 |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ ∪ 𝑠 ∈ 𝒫 ℂ ( { 𝑠 } × ( ℂ ↑pm 𝑠 ) ) ↔ ( 𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ) |
| 8 |
5 7
|
sylib |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ) |
| 9 |
8
|
simprd |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
| 10 |
|
cnex |
⊢ ℂ ∈ V |
| 11 |
8
|
simpld |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → 𝑆 ∈ 𝒫 ℂ ) |
| 12 |
|
elpm2g |
⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ ) → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) ) |
| 13 |
10 11 12
|
sylancr |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) ) |
| 14 |
9 13
|
mpbid |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) |
| 15 |
14
|
simpld |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 17 |
3
|
sseli |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → 〈 𝑆 , 𝐹 〉 ∈ ∪ 𝑠 ∈ 𝒫 ℂ ( { 𝑠 } × ( ℂ ↑pm 𝑠 ) ) ) |
| 18 |
17 7
|
sylib |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ) |
| 19 |
18
|
simprd |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
| 20 |
18
|
simpld |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → 𝑆 ∈ 𝒫 ℂ ) |
| 21 |
10 20 12
|
sylancr |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) ) |
| 22 |
19 21
|
mpbid |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) |
| 23 |
22
|
simprd |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → dom 𝐹 ⊆ 𝑆 ) |
| 24 |
23
|
adantr |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → dom 𝐹 ⊆ 𝑆 ) |
| 25 |
11
|
elpwid |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → 𝑆 ⊆ ℂ ) |
| 26 |
24 25
|
sstrd |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → dom 𝐹 ⊆ ℂ ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) → dom 𝐹 ⊆ ℂ ) |
| 28 |
1
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 29 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 30 |
28 25 29
|
sylancr |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 31 |
|
topontop |
⊢ ( ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → ( 𝐾 ↾t 𝑆 ) ∈ Top ) |
| 32 |
30 31
|
syl |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝐾 ↾t 𝑆 ) ∈ Top ) |
| 33 |
|
toponuni |
⊢ ( ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ ( 𝐾 ↾t 𝑆 ) ) |
| 34 |
30 33
|
syl |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → 𝑆 = ∪ ( 𝐾 ↾t 𝑆 ) ) |
| 35 |
24 34
|
sseqtrd |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → dom 𝐹 ⊆ ∪ ( 𝐾 ↾t 𝑆 ) ) |
| 36 |
|
eqid |
⊢ ∪ ( 𝐾 ↾t 𝑆 ) = ∪ ( 𝐾 ↾t 𝑆 ) |
| 37 |
36
|
ntrss2 |
⊢ ( ( ( 𝐾 ↾t 𝑆 ) ∈ Top ∧ dom 𝐹 ⊆ ∪ ( 𝐾 ↾t 𝑆 ) ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ dom 𝐹 ) |
| 38 |
32 35 37
|
syl2anc |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ dom 𝐹 ) |
| 39 |
38
|
sselda |
⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) → 𝑥 ∈ dom 𝐹 ) |
| 40 |
16 27 39
|
dvlem |
⊢ ( ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ∈ ℂ ) |
| 41 |
40
|
fmpttd |
⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) → ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) : ( dom 𝐹 ∖ { 𝑥 } ) ⟶ ℂ ) |
| 42 |
27
|
ssdifssd |
⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) → ( dom 𝐹 ∖ { 𝑥 } ) ⊆ ℂ ) |
| 43 |
36
|
ntrss3 |
⊢ ( ( ( 𝐾 ↾t 𝑆 ) ∈ Top ∧ dom 𝐹 ⊆ ∪ ( 𝐾 ↾t 𝑆 ) ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ ∪ ( 𝐾 ↾t 𝑆 ) ) |
| 44 |
32 35 43
|
syl2anc |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ ∪ ( 𝐾 ↾t 𝑆 ) ) |
| 45 |
44 34
|
sseqtrrd |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ 𝑆 ) |
| 46 |
|
restabs |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ 𝑆 ∧ 𝑆 ∈ 𝒫 ℂ ) → ( ( 𝐾 ↾t 𝑆 ) ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) = ( 𝐾 ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ) |
| 47 |
28 45 11 46
|
mp3an2i |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( 𝐾 ↾t 𝑆 ) ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) = ( 𝐾 ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ) |
| 48 |
|
simpr |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝐾 ↾t 𝑆 ) ∈ Perf ) |
| 49 |
36
|
ntropn |
⊢ ( ( ( 𝐾 ↾t 𝑆 ) ∈ Top ∧ dom 𝐹 ⊆ ∪ ( 𝐾 ↾t 𝑆 ) ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ∈ ( 𝐾 ↾t 𝑆 ) ) |
| 50 |
32 35 49
|
syl2anc |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ∈ ( 𝐾 ↾t 𝑆 ) ) |
| 51 |
|
eqid |
⊢ ( ( 𝐾 ↾t 𝑆 ) ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) = ( ( 𝐾 ↾t 𝑆 ) ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) |
| 52 |
36 51
|
perfopn |
⊢ ( ( ( 𝐾 ↾t 𝑆 ) ∈ Perf ∧ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ∈ ( 𝐾 ↾t 𝑆 ) ) → ( ( 𝐾 ↾t 𝑆 ) ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ∈ Perf ) |
| 53 |
48 50 52
|
syl2anc |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( 𝐾 ↾t 𝑆 ) ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ∈ Perf ) |
| 54 |
47 53
|
eqeltrrd |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝐾 ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ∈ Perf ) |
| 55 |
1
|
cnfldtop |
⊢ 𝐾 ∈ Top |
| 56 |
45 25
|
sstrd |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ ℂ ) |
| 57 |
28
|
toponunii |
⊢ ℂ = ∪ 𝐾 |
| 58 |
|
eqid |
⊢ ( 𝐾 ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) = ( 𝐾 ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) |
| 59 |
57 58
|
restperf |
⊢ ( ( 𝐾 ∈ Top ∧ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ ℂ ) → ( ( 𝐾 ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ∈ Perf ↔ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ ( ( limPt ‘ 𝐾 ) ‘ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ) ) |
| 60 |
55 56 59
|
sylancr |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( 𝐾 ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ∈ Perf ↔ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ ( ( limPt ‘ 𝐾 ) ‘ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ) ) |
| 61 |
54 60
|
mpbid |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ ( ( limPt ‘ 𝐾 ) ‘ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ) |
| 62 |
57
|
lpss3 |
⊢ ( ( 𝐾 ∈ Top ∧ dom 𝐹 ⊆ ℂ ∧ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ dom 𝐹 ) → ( ( limPt ‘ 𝐾 ) ‘ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ⊆ ( ( limPt ‘ 𝐾 ) ‘ dom 𝐹 ) ) |
| 63 |
55 26 38 62
|
mp3an2i |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( limPt ‘ 𝐾 ) ‘ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ⊆ ( ( limPt ‘ 𝐾 ) ‘ dom 𝐹 ) ) |
| 64 |
61 63
|
sstrd |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ ( ( limPt ‘ 𝐾 ) ‘ dom 𝐹 ) ) |
| 65 |
64
|
sselda |
⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) → 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ dom 𝐹 ) ) |
| 66 |
57
|
lpdifsn |
⊢ ( ( 𝐾 ∈ Top ∧ dom 𝐹 ⊆ ℂ ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ dom 𝐹 ) ↔ 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) |
| 67 |
55 27 66
|
sylancr |
⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ dom 𝐹 ) ↔ 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) |
| 68 |
65 67
|
mpbid |
⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) → 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ ( dom 𝐹 ∖ { 𝑥 } ) ) ) |
| 69 |
41 42 68 1
|
limcmo |
⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) → ∃* 𝑦 𝑦 ∈ ( ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) |
| 70 |
69
|
ex |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) → ∃* 𝑦 𝑦 ∈ ( ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |
| 71 |
|
moanimv |
⊢ ( ∃* 𝑦 ( 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ↔ ( 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) → ∃* 𝑦 𝑦 ∈ ( ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |
| 72 |
70 71
|
sylibr |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ∃* 𝑦 ( 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |
| 73 |
|
eqid |
⊢ ( 𝐾 ↾t 𝑆 ) = ( 𝐾 ↾t 𝑆 ) |
| 74 |
|
eqid |
⊢ ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
| 75 |
73 1 74 25 15 24
|
eldv |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ↔ ( 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) ) |
| 76 |
75
|
mobidv |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ∃* 𝑦 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ↔ ∃* 𝑦 ( 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) ) |
| 77 |
72 76
|
mpbird |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ∃* 𝑦 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) |
| 78 |
77
|
alrimiv |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ∀ 𝑥 ∃* 𝑦 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) |
| 79 |
|
reldv |
⊢ Rel ( 𝑆 D 𝐹 ) |
| 80 |
|
dffun6 |
⊢ ( Fun ( 𝑆 D 𝐹 ) ↔ ( Rel ( 𝑆 D 𝐹 ) ∧ ∀ 𝑥 ∃* 𝑦 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) |
| 81 |
79 80
|
mpbiran |
⊢ ( Fun ( 𝑆 D 𝐹 ) ↔ ∀ 𝑥 ∃* 𝑦 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) |
| 82 |
78 81
|
sylibr |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → Fun ( 𝑆 D 𝐹 ) ) |
| 83 |
82
|
funfnd |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝑆 D 𝐹 ) Fn dom ( 𝑆 D 𝐹 ) ) |
| 84 |
|
vex |
⊢ 𝑦 ∈ V |
| 85 |
84
|
elrn |
⊢ ( 𝑦 ∈ ran ( 𝑆 D 𝐹 ) ↔ ∃ 𝑥 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) |
| 86 |
25 15 24
|
dvcl |
⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑦 ∈ ℂ ) |
| 87 |
86
|
ex |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝑥 ( 𝑆 D 𝐹 ) 𝑦 → 𝑦 ∈ ℂ ) ) |
| 88 |
87
|
exlimdv |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ∃ 𝑥 𝑥 ( 𝑆 D 𝐹 ) 𝑦 → 𝑦 ∈ ℂ ) ) |
| 89 |
85 88
|
biimtrid |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝑦 ∈ ran ( 𝑆 D 𝐹 ) → 𝑦 ∈ ℂ ) ) |
| 90 |
89
|
ssrdv |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ran ( 𝑆 D 𝐹 ) ⊆ ℂ ) |
| 91 |
|
df-f |
⊢ ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ( ( 𝑆 D 𝐹 ) Fn dom ( 𝑆 D 𝐹 ) ∧ ran ( 𝑆 D 𝐹 ) ⊆ ℂ ) ) |
| 92 |
83 90 91
|
sylanbrc |
⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 93 |
92
|
ex |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → ( ( 𝐾 ↾t 𝑆 ) ∈ Perf → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) ) |
| 94 |
|
f0 |
⊢ ∅ : ∅ ⟶ ℂ |
| 95 |
|
df-ov |
⊢ ( 𝑆 D 𝐹 ) = ( D ‘ 〈 𝑆 , 𝐹 〉 ) |
| 96 |
|
ndmfv |
⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → ( D ‘ 〈 𝑆 , 𝐹 〉 ) = ∅ ) |
| 97 |
95 96
|
eqtrid |
⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝑆 D 𝐹 ) = ∅ ) |
| 98 |
97
|
dmeqd |
⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → dom ( 𝑆 D 𝐹 ) = dom ∅ ) |
| 99 |
|
dm0 |
⊢ dom ∅ = ∅ |
| 100 |
98 99
|
eqtrdi |
⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → dom ( 𝑆 D 𝐹 ) = ∅ ) |
| 101 |
97 100
|
feq12d |
⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ∅ : ∅ ⟶ ℂ ) ) |
| 102 |
94 101
|
mpbiri |
⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 103 |
102
|
a1d |
⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → ( ( 𝐾 ↾t 𝑆 ) ∈ Perf → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) ) |
| 104 |
93 103
|
pm2.61i |
⊢ ( ( 𝐾 ↾t 𝑆 ) ∈ Perf → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |