Description: The limit points of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
Assertion | perflp | ⊢ ( 𝐽 ∈ Perf → ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | isperf | ⊢ ( 𝐽 ∈ Perf ↔ ( 𝐽 ∈ Top ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ) ) |
3 | 2 | simprbi | ⊢ ( 𝐽 ∈ Perf → ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ) |