Metamath Proof Explorer


Theorem perflp

Description: The limit points of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypothesis lpfval.1 𝑋 = 𝐽
Assertion perflp ( 𝐽 ∈ Perf → ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 lpfval.1 𝑋 = 𝐽
2 1 isperf ( 𝐽 ∈ Perf ↔ ( 𝐽 ∈ Top ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ) )
3 2 simprbi ( 𝐽 ∈ Perf → ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 )