Metamath Proof Explorer


Theorem permsetexOLD

Description: Obsolete version of f1osetex as of 8-Aug-2024. (Contributed by AV, 30-Mar-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion permsetexOLD ( 𝐴𝑉 → { 𝑓𝑓 : 𝐴1-1-onto𝐴 } ∈ V )

Proof

Step Hyp Ref Expression
1 mapex ( ( 𝐴𝑉𝐴𝑉 ) → { 𝑓𝑓 : 𝐴𝐴 } ∈ V )
2 1 anidms ( 𝐴𝑉 → { 𝑓𝑓 : 𝐴𝐴 } ∈ V )
3 f1of ( 𝑓 : 𝐴1-1-onto𝐴𝑓 : 𝐴𝐴 )
4 3 ss2abi { 𝑓𝑓 : 𝐴1-1-onto𝐴 } ⊆ { 𝑓𝑓 : 𝐴𝐴 }
5 4 a1i ( 𝐴𝑉 → { 𝑓𝑓 : 𝐴1-1-onto𝐴 } ⊆ { 𝑓𝑓 : 𝐴𝐴 } )
6 2 5 ssexd ( 𝐴𝑉 → { 𝑓𝑓 : 𝐴1-1-onto𝐴 } ∈ V )