Step |
Hyp |
Ref |
Expression |
1 |
|
colperpex.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
colperpex.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
colperpex.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
colperpex.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
colperpex.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
6 |
|
perpdrag.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
7 |
|
perpdrag.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
8 |
|
perpdrag.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
9 |
|
perpdrag.4 |
⊢ ( 𝜑 → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐶 ) ) |
10 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐴 ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
12 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐶 = 𝐶 ) |
13 |
10 11 12
|
s3eqd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 〈“ 𝐴 𝐴 𝐶 ”〉 = 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
14 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
15 |
4 5 9
|
perpln1 |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
16 |
1 4 3 5 15 6
|
tglnpt |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
17 |
1 2 3 4 14 5 8 16 8
|
ragtrivb |
⊢ ( 𝜑 → 〈“ 𝐶 𝐴 𝐴 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
18 |
1 2 3 4 14 5 8 16 16 17
|
ragcom |
⊢ ( 𝜑 → 〈“ 𝐴 𝐴 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 〈“ 𝐴 𝐴 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
20 |
13 19
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
21 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐺 ∈ TarskiG ) |
22 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝑃 ) |
23 |
1 4 3 5 15 7
|
tglnpt |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑃 ) |
25 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝐷 ) |
26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) |
27 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐷 ∈ ran 𝐿 ) |
28 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝐷 ) |
29 |
1 3 4 21 22 24 26 26 27 28 25
|
tglinethru |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐷 = ( 𝐴 𝐿 𝐵 ) ) |
30 |
25 29
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ ( 𝐴 𝐿 𝐵 ) ) |
31 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐶 ∈ 𝑃 ) |
32 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐶 ) ) |
33 |
29 32
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐶 ) ) |
34 |
1 2 3 4 21 22 24 30 31 33
|
perprag |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
35 |
20 34
|
pm2.61dane |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |