Step |
Hyp |
Ref |
Expression |
1 |
|
perpln.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
2 |
|
perpln.1 |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
3 |
|
perpln.2 |
⊢ ( 𝜑 → 𝐴 ( ⟂G ‘ 𝐺 ) 𝐵 ) |
4 |
|
df-perpg |
⊢ ⟂G = ( 𝑔 ∈ V ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ∧ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) ) } ) |
5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → 𝑔 = 𝐺 ) |
6 |
5
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( LineG ‘ 𝑔 ) = ( LineG ‘ 𝐺 ) ) |
7 |
6 1
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( LineG ‘ 𝑔 ) = 𝐿 ) |
8 |
7
|
rneqd |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ran ( LineG ‘ 𝑔 ) = ran 𝐿 ) |
9 |
8
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ↔ 𝑎 ∈ ran 𝐿 ) ) |
10 |
8
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ↔ 𝑏 ∈ ran 𝐿 ) ) |
11 |
9 10
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ∧ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ) ↔ ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ) ) |
12 |
5
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( ∟G ‘ 𝑔 ) = ( ∟G ‘ 𝐺 ) ) |
13 |
12
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) ↔ 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) ) |
14 |
13
|
ralbidv |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) ↔ ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) ) |
15 |
14
|
rexralbidv |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) ↔ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) ) |
16 |
11 15
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ∧ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) ) ↔ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) ) ) |
17 |
16
|
opabbidv |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ∧ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) } ) |
18 |
2
|
elexd |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
19 |
1
|
fvexi |
⊢ 𝐿 ∈ V |
20 |
|
rnexg |
⊢ ( 𝐿 ∈ V → ran 𝐿 ∈ V ) |
21 |
19 20
|
mp1i |
⊢ ( 𝜑 → ran 𝐿 ∈ V ) |
22 |
21 21
|
xpexd |
⊢ ( 𝜑 → ( ran 𝐿 × ran 𝐿 ) ∈ V ) |
23 |
|
opabssxp |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) } ⊆ ( ran 𝐿 × ran 𝐿 ) |
24 |
23
|
a1i |
⊢ ( 𝜑 → { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) } ⊆ ( ran 𝐿 × ran 𝐿 ) ) |
25 |
22 24
|
ssexd |
⊢ ( 𝜑 → { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) } ∈ V ) |
26 |
4 17 18 25
|
fvmptd2 |
⊢ ( 𝜑 → ( ⟂G ‘ 𝐺 ) = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) } ) |
27 |
26
|
rneqd |
⊢ ( 𝜑 → ran ( ⟂G ‘ 𝐺 ) = ran { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) } ) |
28 |
23
|
rnssi |
⊢ ran { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) } ⊆ ran ( ran 𝐿 × ran 𝐿 ) |
29 |
27 28
|
eqsstrdi |
⊢ ( 𝜑 → ran ( ⟂G ‘ 𝐺 ) ⊆ ran ( ran 𝐿 × ran 𝐿 ) ) |
30 |
|
rnxpss |
⊢ ran ( ran 𝐿 × ran 𝐿 ) ⊆ ran 𝐿 |
31 |
29 30
|
sstrdi |
⊢ ( 𝜑 → ran ( ⟂G ‘ 𝐺 ) ⊆ ran 𝐿 ) |
32 |
|
relopabv |
⊢ Rel { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) } |
33 |
26
|
releqd |
⊢ ( 𝜑 → ( Rel ( ⟂G ‘ 𝐺 ) ↔ Rel { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿 ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) } ) ) |
34 |
32 33
|
mpbiri |
⊢ ( 𝜑 → Rel ( ⟂G ‘ 𝐺 ) ) |
35 |
|
brrelex12 |
⊢ ( ( Rel ( ⟂G ‘ 𝐺 ) ∧ 𝐴 ( ⟂G ‘ 𝐺 ) 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
36 |
34 3 35
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
37 |
36
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
38 |
36
|
simprd |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
39 |
|
brelrng |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ( ⟂G ‘ 𝐺 ) 𝐵 ) → 𝐵 ∈ ran ( ⟂G ‘ 𝐺 ) ) |
40 |
37 38 3 39
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ ran ( ⟂G ‘ 𝐺 ) ) |
41 |
31 40
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ran 𝐿 ) |