Step |
Hyp |
Ref |
Expression |
1 |
|
colperpex.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
colperpex.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
colperpex.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
colperpex.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
colperpex.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
6 |
|
perprag.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
7 |
|
perprag.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
8 |
|
perprag.3 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ) |
9 |
|
perprag.4 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
10 |
|
perprag.5 |
⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐶 𝐿 𝐷 ) ) |
11 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 𝐴 = 𝐴 ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 𝐶 = 𝐷 ) |
13 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 𝐷 = 𝐷 ) |
14 |
11 12 13
|
s3eqd |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 〈“ 𝐴 𝐶 𝐷 ”〉 = 〈“ 𝐴 𝐷 𝐷 ”〉 ) |
15 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
16 |
1 2 3 4 15 5 6 9 9
|
ragtrivb |
⊢ ( 𝜑 → 〈“ 𝐴 𝐷 𝐷 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 〈“ 𝐴 𝐷 𝐷 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
18 |
14 17
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 〈“ 𝐴 𝐶 𝐷 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
19 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐺 ∈ TarskiG ) |
20 |
1 4 3 5 6 7 8
|
tglngne |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
21 |
1 3 4 5 6 7 20
|
tgelrnln |
⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ∈ ran 𝐿 ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → ( 𝐴 𝐿 𝐵 ) ∈ ran 𝐿 ) |
23 |
1 4 3 5 21 8
|
tglnpt |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐶 ∈ 𝑃 ) |
25 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐷 ∈ 𝑃 ) |
26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐶 ≠ 𝐷 ) |
27 |
1 3 4 19 24 25 26
|
tgelrnln |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → ( 𝐶 𝐿 𝐷 ) ∈ ran 𝐿 ) |
28 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ) |
29 |
1 3 4 19 24 25 26
|
tglinerflx1 |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐶 ∈ ( 𝐶 𝐿 𝐷 ) ) |
30 |
28 29
|
elind |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐶 ∈ ( ( 𝐴 𝐿 𝐵 ) ∩ ( 𝐶 𝐿 𝐷 ) ) ) |
31 |
1 3 4 5 6 7 20
|
tglinerflx1 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 𝐿 𝐵 ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐴 ∈ ( 𝐴 𝐿 𝐵 ) ) |
33 |
1 3 4 19 24 25 26
|
tglinerflx2 |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 𝐷 ∈ ( 𝐶 𝐿 𝐷 ) ) |
34 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐶 𝐿 𝐷 ) ) |
35 |
1 2 3 4 19 22 27 30 32 33 34
|
isperp2d |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐷 ) → 〈“ 𝐴 𝐶 𝐷 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
36 |
18 35
|
pm2.61dane |
⊢ ( 𝜑 → 〈“ 𝐴 𝐶 𝐷 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |