Metamath Proof Explorer


Theorem petid

Description: A class is a partition by the identity class if and only if the cosets by the identity class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion petid ( I Part 𝐴 ↔ ≀ I ErALTV 𝐴 )

Proof

Step Hyp Ref Expression
1 petid2 ( ( Disj I ∧ ( dom I / I ) = 𝐴 ) ↔ ( EqvRel ≀ I ∧ ( dom ≀ I / ≀ I ) = 𝐴 ) )
2 dfpart2 ( I Part 𝐴 ↔ ( Disj I ∧ ( dom I / I ) = 𝐴 ) )
3 dferALTV2 ( ≀ I ErALTV 𝐴 ↔ ( EqvRel ≀ I ∧ ( dom ≀ I / ≀ I ) = 𝐴 ) )
4 1 2 3 3bitr4i ( I Part 𝐴 ↔ ≀ I ErALTV 𝐴 )