Description: A class is a partition by the identity class if and only if the cosets by the identity class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | petid | ⊢ ( I Part 𝐴 ↔ ≀ I ErALTV 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | petid2 | ⊢ ( ( Disj I ∧ ( dom I / I ) = 𝐴 ) ↔ ( EqvRel ≀ I ∧ ( dom ≀ I / ≀ I ) = 𝐴 ) ) | |
2 | dfpart2 | ⊢ ( I Part 𝐴 ↔ ( Disj I ∧ ( dom I / I ) = 𝐴 ) ) | |
3 | dferALTV2 | ⊢ ( ≀ I ErALTV 𝐴 ↔ ( EqvRel ≀ I ∧ ( dom ≀ I / ≀ I ) = 𝐴 ) ) | |
4 | 1 2 3 | 3bitr4i | ⊢ ( I Part 𝐴 ↔ ≀ I ErALTV 𝐴 ) |