Metamath Proof Explorer


Theorem petidres

Description: A class is a partition by identity class restricted to it if and only if the cosets by the restricted identity class are in equivalence relation on it, cf. eqvrel1cossidres . (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion petidres ( ( I ↾ 𝐴 ) Part 𝐴 ↔ ≀ ( I ↾ 𝐴 ) ErALTV 𝐴 )

Proof

Step Hyp Ref Expression
1 petidres2 ( ( Disj ( I ↾ 𝐴 ) ∧ ( dom ( I ↾ 𝐴 ) / ( I ↾ 𝐴 ) ) = 𝐴 ) ↔ ( EqvRel ≀ ( I ↾ 𝐴 ) ∧ ( dom ≀ ( I ↾ 𝐴 ) / ≀ ( I ↾ 𝐴 ) ) = 𝐴 ) )
2 dfpart2 ( ( I ↾ 𝐴 ) Part 𝐴 ↔ ( Disj ( I ↾ 𝐴 ) ∧ ( dom ( I ↾ 𝐴 ) / ( I ↾ 𝐴 ) ) = 𝐴 ) )
3 dferALTV2 ( ≀ ( I ↾ 𝐴 ) ErALTV 𝐴 ↔ ( EqvRel ≀ ( I ↾ 𝐴 ) ∧ ( dom ≀ ( I ↾ 𝐴 ) / ≀ ( I ↾ 𝐴 ) ) = 𝐴 ) )
4 1 2 3 3bitr4i ( ( I ↾ 𝐴 ) Part 𝐴 ↔ ≀ ( I ↾ 𝐴 ) ErALTV 𝐴 )