Description: A class is a partition by identity class restricted to it if and only if the cosets by the restricted identity class are in equivalence relation on it, cf. eqvrel1cossidres . (Contributed by Peter Mazsa, 31-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | petidres | ⊢ ( ( I ↾ 𝐴 ) Part 𝐴 ↔ ≀ ( I ↾ 𝐴 ) ErALTV 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | petidres2 | ⊢ ( ( Disj ( I ↾ 𝐴 ) ∧ ( dom ( I ↾ 𝐴 ) / ( I ↾ 𝐴 ) ) = 𝐴 ) ↔ ( EqvRel ≀ ( I ↾ 𝐴 ) ∧ ( dom ≀ ( I ↾ 𝐴 ) / ≀ ( I ↾ 𝐴 ) ) = 𝐴 ) ) | |
2 | dfpart2 | ⊢ ( ( I ↾ 𝐴 ) Part 𝐴 ↔ ( Disj ( I ↾ 𝐴 ) ∧ ( dom ( I ↾ 𝐴 ) / ( I ↾ 𝐴 ) ) = 𝐴 ) ) | |
3 | dferALTV2 | ⊢ ( ≀ ( I ↾ 𝐴 ) ErALTV 𝐴 ↔ ( EqvRel ≀ ( I ↾ 𝐴 ) ∧ ( dom ≀ ( I ↾ 𝐴 ) / ≀ ( I ↾ 𝐴 ) ) = 𝐴 ) ) | |
4 | 1 2 3 | 3bitr4i | ⊢ ( ( I ↾ 𝐴 ) Part 𝐴 ↔ ≀ ( I ↾ 𝐴 ) ErALTV 𝐴 ) |