Metamath Proof Explorer


Theorem petincnvepres

Description: The shortest form of a partition-equivalence theorem with intersection and general R . Cf. br1cossincnvepres . Cf. pet . (Contributed by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion petincnvepres ( ( 𝑅 ∩ ( E ↾ 𝐴 ) ) Part 𝐴 ↔ ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ErALTV 𝐴 )

Proof

Step Hyp Ref Expression
1 petincnvepres2 ( ( Disj ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ∧ ( dom ( 𝑅 ∩ ( E ↾ 𝐴 ) ) / ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ) = 𝐴 ) ↔ ( EqvRel ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ∧ ( dom ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) / ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ) = 𝐴 ) )
2 dfpart2 ( ( 𝑅 ∩ ( E ↾ 𝐴 ) ) Part 𝐴 ↔ ( Disj ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ∧ ( dom ( 𝑅 ∩ ( E ↾ 𝐴 ) ) / ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ) = 𝐴 ) )
3 dferALTV2 ( ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ErALTV 𝐴 ↔ ( EqvRel ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ∧ ( dom ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) / ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ) = 𝐴 ) )
4 1 2 3 3bitr4i ( ( 𝑅 ∩ ( E ↾ 𝐴 ) ) Part 𝐴 ↔ ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ErALTV 𝐴 )