Description: A partition-equivalence theorem with intersection and general R . (Contributed by Peter Mazsa, 31-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | petincnvepres2 | ⊢ ( ( Disj ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ∧ ( dom ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) / ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ) = 𝐴 ) ↔ ( EqvRel ≀ ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ∧ ( dom ≀ ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) / ≀ ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ) = 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelqseqdisj4 | ⊢ ( ( EqvRel ≀ ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ∧ ( dom ≀ ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) / ≀ ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ) = 𝐴 ) → Disj ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ) | |
2 | 1 | petlem | ⊢ ( ( Disj ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ∧ ( dom ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) / ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ) = 𝐴 ) ↔ ( EqvRel ≀ ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ∧ ( dom ≀ ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) / ≀ ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ) = 𝐴 ) ) |