Metamath Proof Explorer


Theorem petincnvepres2

Description: A partition-equivalence theorem with intersection and general R . (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion petincnvepres2 ( ( Disj ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ∧ ( dom ( 𝑅 ∩ ( E ↾ 𝐴 ) ) / ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ) = 𝐴 ) ↔ ( EqvRel ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ∧ ( dom ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) / ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 eqvrelqseqdisj4 ( ( EqvRel ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ∧ ( dom ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) / ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ) = 𝐴 ) → Disj ( 𝑅 ∩ ( E ↾ 𝐴 ) ) )
2 1 petlem ( ( Disj ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ∧ ( dom ( 𝑅 ∩ ( E ↾ 𝐴 ) ) / ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ) = 𝐴 ) ↔ ( EqvRel ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ∧ ( dom ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) / ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) ) = 𝐴 ) )