Metamath Proof Explorer


Theorem petlemi

Description: If you can prove disjointness (e.g. disjALTV0 , disjALTVid , disjALTVidres , disjALTVxrnidres , search for theorems containing the ' |- Disj ' string), or the same with converse function (cf. dfdisjALTV ), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. (Contributed by Peter Mazsa, 18-Sep-2021)

Ref Expression
Hypothesis petlemi.1 Disj 𝑅
Assertion petlemi ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ↔ ( EqvRel ≀ 𝑅 ∧ ( dom ≀ 𝑅 /𝑅 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 petlemi.1 Disj 𝑅
2 1 a1i ( ( EqvRel ≀ 𝑅 ∧ ( dom ≀ 𝑅 /𝑅 ) = 𝐴 ) → Disj 𝑅 )
3 2 petlem ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ↔ ( EqvRel ≀ 𝑅 ∧ ( dom ≀ 𝑅 /𝑅 ) = 𝐴 ) )