Metamath Proof Explorer


Theorem pets

Description: Partition-Equivalence Theorem with general R , with binary relations. This theorem (together with pet and pet2 ) is the main result of my investigation into set theory, cf. the comment of pet . (Contributed by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion pets ( ( 𝐴𝑉𝑅𝑊 ) → ( ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) Parts 𝐴 ↔ ≀ ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) Ers 𝐴 ) )

Proof

Step Hyp Ref Expression
1 pet ( ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) Part 𝐴 ↔ ≀ ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ErALTV 𝐴 )
2 xrncnvepresex ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∈ V )
3 brpartspart ( ( 𝐴𝑉 ∧ ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∈ V ) → ( ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) Parts 𝐴 ↔ ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) Part 𝐴 ) )
4 2 3 syldan ( ( 𝐴𝑉𝑅𝑊 ) → ( ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) Parts 𝐴 ↔ ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) Part 𝐴 ) )
5 1cossxrncnvepresex ( ( 𝐴𝑉𝑅𝑊 ) → ≀ ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∈ V )
6 brerser ( ( 𝐴𝑉 ∧ ≀ ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∈ V ) → ( ≀ ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) Ers 𝐴 ↔ ≀ ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ErALTV 𝐴 ) )
7 5 6 syldan ( ( 𝐴𝑉𝑅𝑊 ) → ( ≀ ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) Ers 𝐴 ↔ ≀ ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ErALTV 𝐴 ) )
8 4 7 bibi12d ( ( 𝐴𝑉𝑅𝑊 ) → ( ( ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) Parts 𝐴 ↔ ≀ ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) Ers 𝐴 ) ↔ ( ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) Part 𝐴 ↔ ≀ ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ErALTV 𝐴 ) ) )
9 1 8 mpbiri ( ( 𝐴𝑉𝑅𝑊 ) → ( ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) Parts 𝐴 ↔ ≀ ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) Ers 𝐴 ) )