Step |
Hyp |
Ref |
Expression |
1 |
|
pexmidALT.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
pexmidALT.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
3 |
|
pexmidALT.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
4 |
|
id |
⊢ ( 𝑋 = ∅ → 𝑋 = ∅ ) |
5 |
|
fveq2 |
⊢ ( 𝑋 = ∅ → ( ⊥ ‘ 𝑋 ) = ( ⊥ ‘ ∅ ) ) |
6 |
4 5
|
oveq12d |
⊢ ( 𝑋 = ∅ → ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) = ( ∅ + ( ⊥ ‘ ∅ ) ) ) |
7 |
1 3
|
pol0N |
⊢ ( 𝐾 ∈ HL → ( ⊥ ‘ ∅ ) = 𝐴 ) |
8 |
|
eqimss |
⊢ ( ( ⊥ ‘ ∅ ) = 𝐴 → ( ⊥ ‘ ∅ ) ⊆ 𝐴 ) |
9 |
7 8
|
syl |
⊢ ( 𝐾 ∈ HL → ( ⊥ ‘ ∅ ) ⊆ 𝐴 ) |
10 |
1 2
|
padd02 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⊥ ‘ ∅ ) ⊆ 𝐴 ) → ( ∅ + ( ⊥ ‘ ∅ ) ) = ( ⊥ ‘ ∅ ) ) |
11 |
9 10
|
mpdan |
⊢ ( 𝐾 ∈ HL → ( ∅ + ( ⊥ ‘ ∅ ) ) = ( ⊥ ‘ ∅ ) ) |
12 |
11 7
|
eqtrd |
⊢ ( 𝐾 ∈ HL → ( ∅ + ( ⊥ ‘ ∅ ) ) = 𝐴 ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( ∅ + ( ⊥ ‘ ∅ ) ) = 𝐴 ) |
14 |
6 13
|
sylan9eqr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ∧ 𝑋 = ∅ ) → ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) = 𝐴 ) |
15 |
1 2 3
|
pexmidlem8N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ 𝑋 ≠ ∅ ) ) → ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) = 𝐴 ) |
16 |
15
|
anassrs |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ∧ 𝑋 ≠ ∅ ) → ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) = 𝐴 ) |
17 |
14 16
|
pm2.61dane |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) = 𝐴 ) |