| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pexmid.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 2 |
|
pexmid.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
| 3 |
|
pexmid.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
| 4 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → 𝐾 ∈ HL ) |
| 5 |
|
simplr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → 𝑋 ⊆ 𝐴 ) |
| 6 |
1 3
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) |
| 8 |
1 2 3
|
poldmj1N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) → ( ⊥ ‘ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 9 |
4 5 7 8
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( ⊥ ‘ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 10 |
1 3
|
pnonsingN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) → ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) = ∅ ) |
| 11 |
4 7 10
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) = ∅ ) |
| 12 |
9 11
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( ⊥ ‘ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) = ∅ ) |
| 13 |
12
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) ) = ( ⊥ ‘ ∅ ) ) |
| 14 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 15 |
|
eqid |
⊢ ( PSubCl ‘ 𝐾 ) = ( PSubCl ‘ 𝐾 ) |
| 16 |
1 3 15
|
ispsubclN |
⊢ ( 𝐾 ∈ HL → ( 𝑋 ∈ ( PSubCl ‘ 𝐾 ) ↔ ( 𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ) ) |
| 17 |
16
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( 𝑋 ∈ ( PSubCl ‘ 𝐾 ) ↔ ( 𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ) ) |
| 18 |
5 14 17
|
mpbir2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → 𝑋 ∈ ( PSubCl ‘ 𝐾 ) ) |
| 19 |
1 3 15
|
polsubclN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑋 ) ∈ ( PSubCl ‘ 𝐾 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( ⊥ ‘ 𝑋 ) ∈ ( PSubCl ‘ 𝐾 ) ) |
| 21 |
1 3
|
2polssN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → 𝑋 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → 𝑋 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 23 |
2 3 15
|
osumclN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ ( PSubCl ‘ 𝐾 ) ∧ ( ⊥ ‘ 𝑋 ) ∈ ( PSubCl ‘ 𝐾 ) ) ∧ 𝑋 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ∈ ( PSubCl ‘ 𝐾 ) ) |
| 24 |
4 18 20 22 23
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ∈ ( PSubCl ‘ 𝐾 ) ) |
| 25 |
3 15
|
psubcli2N |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ∈ ( PSubCl ‘ 𝐾 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) ) = ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) |
| 26 |
4 24 25
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) ) = ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) |
| 27 |
1 3
|
pol0N |
⊢ ( 𝐾 ∈ HL → ( ⊥ ‘ ∅ ) = 𝐴 ) |
| 28 |
27
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( ⊥ ‘ ∅ ) = 𝐴 ) |
| 29 |
13 26 28
|
3eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) = 𝐴 ) |