Step |
Hyp |
Ref |
Expression |
1 |
|
pexmidlem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
pexmidlem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
pexmidlem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
pexmidlem.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
|
pexmidlem.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
6 |
|
pexmidlem.m |
⊢ 𝑀 = ( 𝑋 + { 𝑝 } ) |
7 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) → ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ) |
8 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) → 𝑟 ∈ 𝑋 ) |
9 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) → 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) |
10 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → 𝐾 ∈ HL ) |
11 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → 𝑋 ⊆ 𝐴 ) |
12 |
3 5
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) |
13 |
10 11 12
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) |
14 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) |
15 |
13 14
|
sseldd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → 𝑞 ∈ 𝐴 ) |
16 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → 𝑝 ∈ 𝐴 ) |
17 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → 𝑟 ∈ 𝑋 ) |
18 |
11 17
|
sseldd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → 𝑟 ∈ 𝐴 ) |
19 |
1 2 3 4 5 6
|
pexmidlem1N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → 𝑞 ≠ 𝑟 ) |
20 |
19
|
3adantl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → 𝑞 ≠ 𝑟 ) |
21 |
1 2 3
|
hlatexch1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ 𝑞 ≠ 𝑟 ) → ( 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) → 𝑝 ≤ ( 𝑟 ∨ 𝑞 ) ) ) |
22 |
10 15 16 18 20 21
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) → 𝑝 ≤ ( 𝑟 ∨ 𝑞 ) ) ) |
23 |
22
|
3impia |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) → 𝑝 ≤ ( 𝑟 ∨ 𝑞 ) ) |
24 |
1 2 3 4 5 6
|
pexmidlem2N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ∧ 𝑝 ≤ ( 𝑟 ∨ 𝑞 ) ) ) → 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) |
25 |
7 8 9 23 24
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) → 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) |