Step |
Hyp |
Ref |
Expression |
1 |
|
pexmidlem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
pexmidlem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
pexmidlem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
pexmidlem.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
|
pexmidlem.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
6 |
|
pexmidlem.m |
⊢ 𝑀 = ( 𝑋 + { 𝑝 } ) |
7 |
|
n0 |
⊢ ( ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ≠ ∅ ↔ ∃ 𝑞 𝑞 ∈ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) |
8 |
1 2 3 4 5 6
|
pexmidlem4N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑞 ∈ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) ) → 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) |
9 |
8
|
expr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( 𝑞 ∈ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) → 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) ) |
10 |
9
|
exlimdv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑞 𝑞 ∈ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) → 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) ) |
11 |
7 10
|
syl5bi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ≠ ∅ → 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) ) |
12 |
11
|
necon1bd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( ¬ 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) → ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) = ∅ ) ) |
13 |
12
|
impr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) ) → ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) = ∅ ) |