Step |
Hyp |
Ref |
Expression |
1 |
|
pexmidlem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
pexmidlem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
pexmidlem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
pexmidlem.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
|
pexmidlem.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
6 |
|
pexmidlem.m |
⊢ 𝑀 = ( 𝑋 + { 𝑝 } ) |
7 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) ) → 𝐾 ∈ HL ) |
8 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) ) → 𝑝 ∈ 𝐴 ) |
9 |
8
|
snssd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) ) → { 𝑝 } ⊆ 𝐴 ) |
10 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) ) → 𝑋 ⊆ 𝐴 ) |
11 |
3 4
|
sspadd2 |
⊢ ( ( 𝐾 ∈ HL ∧ { 𝑝 } ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴 ) → { 𝑝 } ⊆ ( 𝑋 + { 𝑝 } ) ) |
12 |
7 9 10 11
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) ) → { 𝑝 } ⊆ ( 𝑋 + { 𝑝 } ) ) |
13 |
|
vex |
⊢ 𝑝 ∈ V |
14 |
13
|
snss |
⊢ ( 𝑝 ∈ ( 𝑋 + { 𝑝 } ) ↔ { 𝑝 } ⊆ ( 𝑋 + { 𝑝 } ) ) |
15 |
12 14
|
sylibr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) ) → 𝑝 ∈ ( 𝑋 + { 𝑝 } ) ) |
16 |
15 6
|
eleqtrrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) ) → 𝑝 ∈ 𝑀 ) |
17 |
3 5
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) |
18 |
7 10 17
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) |
19 |
3 4
|
sspadd1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) → 𝑋 ⊆ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) |
20 |
7 10 18 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) ) → 𝑋 ⊆ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) |
21 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) ) → ¬ 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) |
22 |
20 21
|
ssneldd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) ) → ¬ 𝑝 ∈ 𝑋 ) |
23 |
|
nelne1 |
⊢ ( ( 𝑝 ∈ 𝑀 ∧ ¬ 𝑝 ∈ 𝑋 ) → 𝑀 ≠ 𝑋 ) |
24 |
16 22 23
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) ) → 𝑀 ≠ 𝑋 ) |