Step |
Hyp |
Ref |
Expression |
1 |
|
pf1const.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
pf1const.q |
⊢ 𝑄 = ran ( eval1 ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( eval1 ‘ 𝑅 ) = ( eval1 ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) = ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) |
6 |
3 4 1 5
|
evl1sca |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( eval1 ‘ 𝑅 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |
7 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐵 ) = ( 𝑅 ↑s 𝐵 ) |
8 |
3 4 7 1
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
10 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
11 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) |
12 |
10 11
|
rhmf |
⊢ ( ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) → ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
13 |
|
ffn |
⊢ ( ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) → ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
14 |
9 12 13
|
3syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
15 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
16 |
15
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
17 |
4 5 1 10
|
ply1sclf |
⊢ ( 𝑅 ∈ Ring → ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) : 𝐵 ⟶ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
18 |
16 17
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) : 𝐵 ⟶ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
19 |
|
ffvelrn |
⊢ ( ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) : 𝐵 ⟶ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∧ 𝑋 ∈ 𝐵 ) → ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
20 |
18 19
|
sylancom |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
21 |
|
fnfvelrn |
⊢ ( ( ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∧ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( eval1 ‘ 𝑅 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑋 ) ) ∈ ran ( eval1 ‘ 𝑅 ) ) |
22 |
14 20 21
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( eval1 ‘ 𝑅 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑋 ) ) ∈ ran ( eval1 ‘ 𝑅 ) ) |
23 |
6 22
|
eqeltrrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝐵 × { 𝑋 } ) ∈ ran ( eval1 ‘ 𝑅 ) ) |
24 |
23 2
|
eleqtrrdi |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝐵 × { 𝑋 } ) ∈ 𝑄 ) |