Step |
Hyp |
Ref |
Expression |
1 |
|
pf1rcl.q |
⊢ 𝑄 = ran ( eval1 ‘ 𝑅 ) |
2 |
|
pf1f.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐵 ) = ( 𝑅 ↑s 𝐵 ) |
4 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) |
5 |
1
|
pf1rcl |
⊢ ( 𝐹 ∈ 𝑄 → 𝑅 ∈ CRing ) |
6 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
7 |
6
|
a1i |
⊢ ( 𝐹 ∈ 𝑄 → 𝐵 ∈ V ) |
8 |
2 1
|
pf1subrg |
⊢ ( 𝑅 ∈ CRing → 𝑄 ∈ ( SubRing ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
9 |
4
|
subrgss |
⊢ ( 𝑄 ∈ ( SubRing ‘ ( 𝑅 ↑s 𝐵 ) ) → 𝑄 ⊆ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
10 |
5 8 9
|
3syl |
⊢ ( 𝐹 ∈ 𝑄 → 𝑄 ⊆ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
11 |
|
id |
⊢ ( 𝐹 ∈ 𝑄 → 𝐹 ∈ 𝑄 ) |
12 |
10 11
|
sseldd |
⊢ ( 𝐹 ∈ 𝑄 → 𝐹 ∈ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
13 |
3 2 4 5 7 12
|
pwselbas |
⊢ ( 𝐹 ∈ 𝑄 → 𝐹 : 𝐵 ⟶ 𝐵 ) |