| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pf1rcl.q | 
							⊢ 𝑄  =  ran  ( eval1 ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							pf1f.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑅  ↑s  𝐵 )  =  ( 𝑅  ↑s  𝐵 )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( 𝑅  ↑s  𝐵 ) )  =  ( Base ‘ ( 𝑅  ↑s  𝐵 ) )  | 
						
						
							| 5 | 
							
								1
							 | 
							pf1rcl | 
							⊢ ( 𝐹  ∈  𝑄  →  𝑅  ∈  CRing )  | 
						
						
							| 6 | 
							
								2
							 | 
							fvexi | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							⊢ ( 𝐹  ∈  𝑄  →  𝐵  ∈  V )  | 
						
						
							| 8 | 
							
								2 1
							 | 
							pf1subrg | 
							⊢ ( 𝑅  ∈  CRing  →  𝑄  ∈  ( SubRing ‘ ( 𝑅  ↑s  𝐵 ) ) )  | 
						
						
							| 9 | 
							
								4
							 | 
							subrgss | 
							⊢ ( 𝑄  ∈  ( SubRing ‘ ( 𝑅  ↑s  𝐵 ) )  →  𝑄  ⊆  ( Base ‘ ( 𝑅  ↑s  𝐵 ) ) )  | 
						
						
							| 10 | 
							
								5 8 9
							 | 
							3syl | 
							⊢ ( 𝐹  ∈  𝑄  →  𝑄  ⊆  ( Base ‘ ( 𝑅  ↑s  𝐵 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							id | 
							⊢ ( 𝐹  ∈  𝑄  →  𝐹  ∈  𝑄 )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sseldd | 
							⊢ ( 𝐹  ∈  𝑄  →  𝐹  ∈  ( Base ‘ ( 𝑅  ↑s  𝐵 ) ) )  | 
						
						
							| 13 | 
							
								3 2 4 5 7 12
							 | 
							pwselbas | 
							⊢ ( 𝐹  ∈  𝑄  →  𝐹 : 𝐵 ⟶ 𝐵 )  |