Metamath Proof Explorer


Theorem pf1f

Description: Polynomial functions are functions. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses pf1rcl.q 𝑄 = ran ( eval1𝑅 )
pf1f.b 𝐵 = ( Base ‘ 𝑅 )
Assertion pf1f ( 𝐹𝑄𝐹 : 𝐵𝐵 )

Proof

Step Hyp Ref Expression
1 pf1rcl.q 𝑄 = ran ( eval1𝑅 )
2 pf1f.b 𝐵 = ( Base ‘ 𝑅 )
3 eqid ( 𝑅s 𝐵 ) = ( 𝑅s 𝐵 )
4 eqid ( Base ‘ ( 𝑅s 𝐵 ) ) = ( Base ‘ ( 𝑅s 𝐵 ) )
5 1 pf1rcl ( 𝐹𝑄𝑅 ∈ CRing )
6 2 fvexi 𝐵 ∈ V
7 6 a1i ( 𝐹𝑄𝐵 ∈ V )
8 2 1 pf1subrg ( 𝑅 ∈ CRing → 𝑄 ∈ ( SubRing ‘ ( 𝑅s 𝐵 ) ) )
9 4 subrgss ( 𝑄 ∈ ( SubRing ‘ ( 𝑅s 𝐵 ) ) → 𝑄 ⊆ ( Base ‘ ( 𝑅s 𝐵 ) ) )
10 5 8 9 3syl ( 𝐹𝑄𝑄 ⊆ ( Base ‘ ( 𝑅s 𝐵 ) ) )
11 id ( 𝐹𝑄𝐹𝑄 )
12 10 11 sseldd ( 𝐹𝑄𝐹 ∈ ( Base ‘ ( 𝑅s 𝐵 ) ) )
13 3 2 4 5 7 12 pwselbas ( 𝐹𝑄𝐹 : 𝐵𝐵 )