Step |
Hyp |
Ref |
Expression |
1 |
|
pf1const.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
pf1const.q |
⊢ 𝑄 = ran ( eval1 ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( eval1 ‘ 𝑅 ) = ( eval1 ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
5 |
3 4 1
|
evl1var |
⊢ ( 𝑅 ∈ CRing → ( ( eval1 ‘ 𝑅 ) ‘ ( var1 ‘ 𝑅 ) ) = ( I ↾ 𝐵 ) ) |
6 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐵 ) = ( 𝑅 ↑s 𝐵 ) |
8 |
3 6 7 1
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
9 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
10 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) |
11 |
9 10
|
rhmf |
⊢ ( ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) → ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
12 |
|
ffn |
⊢ ( ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) → ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
13 |
8 11 12
|
3syl |
⊢ ( 𝑅 ∈ CRing → ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
14 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
15 |
4 6 9
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
16 |
14 15
|
syl |
⊢ ( 𝑅 ∈ CRing → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
17 |
|
fnfvelrn |
⊢ ( ( ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∧ ( var1 ‘ 𝑅 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( eval1 ‘ 𝑅 ) ‘ ( var1 ‘ 𝑅 ) ) ∈ ran ( eval1 ‘ 𝑅 ) ) |
18 |
13 16 17
|
syl2anc |
⊢ ( 𝑅 ∈ CRing → ( ( eval1 ‘ 𝑅 ) ‘ ( var1 ‘ 𝑅 ) ) ∈ ran ( eval1 ‘ 𝑅 ) ) |
19 |
5 18
|
eqeltrrd |
⊢ ( 𝑅 ∈ CRing → ( I ↾ 𝐵 ) ∈ ran ( eval1 ‘ 𝑅 ) ) |
20 |
19 2
|
eleqtrrdi |
⊢ ( 𝑅 ∈ CRing → ( I ↾ 𝐵 ) ∈ 𝑄 ) |