Step |
Hyp |
Ref |
Expression |
1 |
|
pf1ind.cb |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
pf1ind.cp |
⊢ + = ( +g ‘ 𝑅 ) |
3 |
|
pf1ind.ct |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
pf1ind.cq |
⊢ 𝑄 = ran ( eval1 ‘ 𝑅 ) |
5 |
|
pf1ind.ad |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑄 ∧ 𝜏 ) ∧ ( 𝑔 ∈ 𝑄 ∧ 𝜂 ) ) ) → 𝜁 ) |
6 |
|
pf1ind.mu |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑄 ∧ 𝜏 ) ∧ ( 𝑔 ∈ 𝑄 ∧ 𝜂 ) ) ) → 𝜎 ) |
7 |
|
pf1ind.wa |
⊢ ( 𝑥 = ( 𝐵 × { 𝑓 } ) → ( 𝜓 ↔ 𝜒 ) ) |
8 |
|
pf1ind.wb |
⊢ ( 𝑥 = ( I ↾ 𝐵 ) → ( 𝜓 ↔ 𝜃 ) ) |
9 |
|
pf1ind.wc |
⊢ ( 𝑥 = 𝑓 → ( 𝜓 ↔ 𝜏 ) ) |
10 |
|
pf1ind.wd |
⊢ ( 𝑥 = 𝑔 → ( 𝜓 ↔ 𝜂 ) ) |
11 |
|
pf1ind.we |
⊢ ( 𝑥 = ( 𝑓 ∘f + 𝑔 ) → ( 𝜓 ↔ 𝜁 ) ) |
12 |
|
pf1ind.wf |
⊢ ( 𝑥 = ( 𝑓 ∘f · 𝑔 ) → ( 𝜓 ↔ 𝜎 ) ) |
13 |
|
pf1ind.wg |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜌 ) ) |
14 |
|
pf1ind.co |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) → 𝜒 ) |
15 |
|
pf1ind.pr |
⊢ ( 𝜑 → 𝜃 ) |
16 |
|
pf1ind.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑄 ) |
17 |
|
coass |
⊢ ( ( 𝐴 ∘ ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) = ( 𝐴 ∘ ( ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) |
18 |
|
df1o2 |
⊢ 1o = { ∅ } |
19 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
20 |
|
0ex |
⊢ ∅ ∈ V |
21 |
|
eqid |
⊢ ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) = ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) |
22 |
18 19 20 21
|
mapsncnv |
⊢ ◡ ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) = ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) |
23 |
22
|
coeq2i |
⊢ ( ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ∘ ◡ ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ) = ( ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) |
24 |
18 19 20 21
|
mapsnf1o2 |
⊢ ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) : ( 𝐵 ↑m 1o ) –1-1-onto→ 𝐵 |
25 |
|
f1ococnv2 |
⊢ ( ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) : ( 𝐵 ↑m 1o ) –1-1-onto→ 𝐵 → ( ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ∘ ◡ ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ) = ( I ↾ 𝐵 ) ) |
26 |
24 25
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ∘ ◡ ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ) = ( I ↾ 𝐵 ) ) |
27 |
23 26
|
eqtr3id |
⊢ ( 𝜑 → ( ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) = ( I ↾ 𝐵 ) ) |
28 |
27
|
coeq2d |
⊢ ( 𝜑 → ( 𝐴 ∘ ( ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) = ( 𝐴 ∘ ( I ↾ 𝐵 ) ) ) |
29 |
17 28
|
syl5eq |
⊢ ( 𝜑 → ( ( 𝐴 ∘ ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) = ( 𝐴 ∘ ( I ↾ 𝐵 ) ) ) |
30 |
4 1
|
pf1f |
⊢ ( 𝐴 ∈ 𝑄 → 𝐴 : 𝐵 ⟶ 𝐵 ) |
31 |
|
fcoi1 |
⊢ ( 𝐴 : 𝐵 ⟶ 𝐵 → ( 𝐴 ∘ ( I ↾ 𝐵 ) ) = 𝐴 ) |
32 |
16 30 31
|
3syl |
⊢ ( 𝜑 → ( 𝐴 ∘ ( I ↾ 𝐵 ) ) = 𝐴 ) |
33 |
29 32
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 ∘ ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) = 𝐴 ) |
34 |
|
eqid |
⊢ ( 1o eval 𝑅 ) = ( 1o eval 𝑅 ) |
35 |
34 1
|
evlval |
⊢ ( 1o eval 𝑅 ) = ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) |
36 |
35
|
rneqi |
⊢ ran ( 1o eval 𝑅 ) = ran ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) |
37 |
|
an4 |
⊢ ( ( ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ∧ ( 𝑏 ∈ ran ( 1o eval 𝑅 ) ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) ↔ ( ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) ∧ ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) ) |
38 |
|
eqid |
⊢ ran ( 1o eval 𝑅 ) = ran ( 1o eval 𝑅 ) |
39 |
4 1 38
|
mpfpf1 |
⊢ ( 𝑎 ∈ ran ( 1o eval 𝑅 ) → ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ 𝑄 ) |
40 |
4 1 38
|
mpfpf1 |
⊢ ( 𝑏 ∈ ran ( 1o eval 𝑅 ) → ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ 𝑄 ) |
41 |
|
vex |
⊢ 𝑓 ∈ V |
42 |
41 9
|
elab |
⊢ ( 𝑓 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜏 ) |
43 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( 𝑓 ∈ { 𝑥 ∣ 𝜓 } ↔ ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
44 |
42 43
|
bitr3id |
⊢ ( 𝑓 = ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( 𝜏 ↔ ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
45 |
44
|
anbi1d |
⊢ ( 𝑓 = ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( ( 𝜏 ∧ 𝜂 ) ↔ ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ 𝜂 ) ) ) |
46 |
45
|
anbi1d |
⊢ ( 𝑓 = ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( ( ( 𝜏 ∧ 𝜂 ) ∧ 𝜑 ) ↔ ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ 𝜂 ) ∧ 𝜑 ) ) ) |
47 |
|
ovex |
⊢ ( 𝑓 ∘f + 𝑔 ) ∈ V |
48 |
47 11
|
elab |
⊢ ( ( 𝑓 ∘f + 𝑔 ) ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜁 ) |
49 |
|
oveq1 |
⊢ ( 𝑓 = ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( 𝑓 ∘f + 𝑔 ) = ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f + 𝑔 ) ) |
50 |
49
|
eleq1d |
⊢ ( 𝑓 = ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( ( 𝑓 ∘f + 𝑔 ) ∈ { 𝑥 ∣ 𝜓 } ↔ ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f + 𝑔 ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
51 |
48 50
|
bitr3id |
⊢ ( 𝑓 = ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( 𝜁 ↔ ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f + 𝑔 ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
52 |
46 51
|
imbi12d |
⊢ ( 𝑓 = ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( ( ( ( 𝜏 ∧ 𝜂 ) ∧ 𝜑 ) → 𝜁 ) ↔ ( ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ 𝜂 ) ∧ 𝜑 ) → ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f + 𝑔 ) ∈ { 𝑥 ∣ 𝜓 } ) ) ) |
53 |
|
vex |
⊢ 𝑔 ∈ V |
54 |
53 10
|
elab |
⊢ ( 𝑔 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜂 ) |
55 |
|
eleq1 |
⊢ ( 𝑔 = ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( 𝑔 ∈ { 𝑥 ∣ 𝜓 } ↔ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
56 |
54 55
|
bitr3id |
⊢ ( 𝑔 = ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( 𝜂 ↔ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
57 |
56
|
anbi2d |
⊢ ( 𝑔 = ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ 𝜂 ) ↔ ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) ) |
58 |
57
|
anbi1d |
⊢ ( 𝑔 = ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ 𝜂 ) ∧ 𝜑 ) ↔ ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ∧ 𝜑 ) ) ) |
59 |
|
oveq2 |
⊢ ( 𝑔 = ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f + 𝑔 ) = ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f + ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) ) |
60 |
59
|
eleq1d |
⊢ ( 𝑔 = ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f + 𝑔 ) ∈ { 𝑥 ∣ 𝜓 } ↔ ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f + ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
61 |
58 60
|
imbi12d |
⊢ ( 𝑔 = ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( ( ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ 𝜂 ) ∧ 𝜑 ) → ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f + 𝑔 ) ∈ { 𝑥 ∣ 𝜓 } ) ↔ ( ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ∧ 𝜑 ) → ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f + ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) ) |
62 |
5
|
expcom |
⊢ ( ( ( 𝑓 ∈ 𝑄 ∧ 𝜏 ) ∧ ( 𝑔 ∈ 𝑄 ∧ 𝜂 ) ) → ( 𝜑 → 𝜁 ) ) |
63 |
62
|
an4s |
⊢ ( ( ( 𝑓 ∈ 𝑄 ∧ 𝑔 ∈ 𝑄 ) ∧ ( 𝜏 ∧ 𝜂 ) ) → ( 𝜑 → 𝜁 ) ) |
64 |
63
|
expimpd |
⊢ ( ( 𝑓 ∈ 𝑄 ∧ 𝑔 ∈ 𝑄 ) → ( ( ( 𝜏 ∧ 𝜂 ) ∧ 𝜑 ) → 𝜁 ) ) |
65 |
52 61 64
|
vtocl2ga |
⊢ ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ 𝑄 ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ 𝑄 ) → ( ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ∧ 𝜑 ) → ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f + ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
66 |
39 40 65
|
syl2an |
⊢ ( ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) → ( ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ∧ 𝜑 ) → ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f + ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
67 |
66
|
expcomd |
⊢ ( ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) → ( 𝜑 → ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) → ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f + ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) ) |
68 |
67
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) ) → ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) → ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f + ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
69 |
36 1
|
mpff |
⊢ ( 𝑎 ∈ ran ( 1o eval 𝑅 ) → 𝑎 : ( 𝐵 ↑m 1o ) ⟶ 𝐵 ) |
70 |
69
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) ) → 𝑎 : ( 𝐵 ↑m 1o ) ⟶ 𝐵 ) |
71 |
70
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) ) → 𝑎 Fn ( 𝐵 ↑m 1o ) ) |
72 |
36 1
|
mpff |
⊢ ( 𝑏 ∈ ran ( 1o eval 𝑅 ) → 𝑏 : ( 𝐵 ↑m 1o ) ⟶ 𝐵 ) |
73 |
72
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) ) → 𝑏 : ( 𝐵 ↑m 1o ) ⟶ 𝐵 ) |
74 |
73
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) ) → 𝑏 Fn ( 𝐵 ↑m 1o ) ) |
75 |
|
eqid |
⊢ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) = ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) |
76 |
18 19 20 75
|
mapsnf1o3 |
⊢ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) : 𝐵 –1-1-onto→ ( 𝐵 ↑m 1o ) |
77 |
|
f1of |
⊢ ( ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) : 𝐵 –1-1-onto→ ( 𝐵 ↑m 1o ) → ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) : 𝐵 ⟶ ( 𝐵 ↑m 1o ) ) |
78 |
76 77
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) ) → ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) : 𝐵 ⟶ ( 𝐵 ↑m 1o ) ) |
79 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) ) → ( 𝐵 ↑m 1o ) ∈ V ) |
80 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) ) → 𝐵 ∈ V ) |
81 |
|
inidm |
⊢ ( ( 𝐵 ↑m 1o ) ∩ ( 𝐵 ↑m 1o ) ) = ( 𝐵 ↑m 1o ) |
82 |
71 74 78 79 79 80 81
|
ofco |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) ) → ( ( 𝑎 ∘f + 𝑏 ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) = ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f + ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) ) |
83 |
82
|
eleq1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) ) → ( ( ( 𝑎 ∘f + 𝑏 ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ↔ ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f + ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
84 |
68 83
|
sylibrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) ) → ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) → ( ( 𝑎 ∘f + 𝑏 ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
85 |
84
|
expimpd |
⊢ ( 𝜑 → ( ( ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) ∧ ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) → ( ( 𝑎 ∘f + 𝑏 ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
86 |
37 85
|
syl5bi |
⊢ ( 𝜑 → ( ( ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ∧ ( 𝑏 ∈ ran ( 1o eval 𝑅 ) ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) → ( ( 𝑎 ∘f + 𝑏 ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
87 |
86
|
imp |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ∧ ( 𝑏 ∈ ran ( 1o eval 𝑅 ) ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) ) → ( ( 𝑎 ∘f + 𝑏 ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) |
88 |
|
ovex |
⊢ ( 𝑓 ∘f · 𝑔 ) ∈ V |
89 |
88 12
|
elab |
⊢ ( ( 𝑓 ∘f · 𝑔 ) ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜎 ) |
90 |
|
oveq1 |
⊢ ( 𝑓 = ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( 𝑓 ∘f · 𝑔 ) = ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f · 𝑔 ) ) |
91 |
90
|
eleq1d |
⊢ ( 𝑓 = ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( ( 𝑓 ∘f · 𝑔 ) ∈ { 𝑥 ∣ 𝜓 } ↔ ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f · 𝑔 ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
92 |
89 91
|
bitr3id |
⊢ ( 𝑓 = ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( 𝜎 ↔ ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f · 𝑔 ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
93 |
46 92
|
imbi12d |
⊢ ( 𝑓 = ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( ( ( ( 𝜏 ∧ 𝜂 ) ∧ 𝜑 ) → 𝜎 ) ↔ ( ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ 𝜂 ) ∧ 𝜑 ) → ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f · 𝑔 ) ∈ { 𝑥 ∣ 𝜓 } ) ) ) |
94 |
|
oveq2 |
⊢ ( 𝑔 = ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f · 𝑔 ) = ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f · ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) ) |
95 |
94
|
eleq1d |
⊢ ( 𝑔 = ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f · 𝑔 ) ∈ { 𝑥 ∣ 𝜓 } ↔ ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f · ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
96 |
58 95
|
imbi12d |
⊢ ( 𝑔 = ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) → ( ( ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ 𝜂 ) ∧ 𝜑 ) → ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f · 𝑔 ) ∈ { 𝑥 ∣ 𝜓 } ) ↔ ( ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ∧ 𝜑 ) → ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f · ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) ) |
97 |
6
|
expcom |
⊢ ( ( ( 𝑓 ∈ 𝑄 ∧ 𝜏 ) ∧ ( 𝑔 ∈ 𝑄 ∧ 𝜂 ) ) → ( 𝜑 → 𝜎 ) ) |
98 |
97
|
an4s |
⊢ ( ( ( 𝑓 ∈ 𝑄 ∧ 𝑔 ∈ 𝑄 ) ∧ ( 𝜏 ∧ 𝜂 ) ) → ( 𝜑 → 𝜎 ) ) |
99 |
98
|
expimpd |
⊢ ( ( 𝑓 ∈ 𝑄 ∧ 𝑔 ∈ 𝑄 ) → ( ( ( 𝜏 ∧ 𝜂 ) ∧ 𝜑 ) → 𝜎 ) ) |
100 |
93 96 99
|
vtocl2ga |
⊢ ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ 𝑄 ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ 𝑄 ) → ( ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ∧ 𝜑 ) → ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f · ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
101 |
39 40 100
|
syl2an |
⊢ ( ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) → ( ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ∧ 𝜑 ) → ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f · ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
102 |
101
|
expcomd |
⊢ ( ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) → ( 𝜑 → ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) → ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f · ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) ) |
103 |
102
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) ) → ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) → ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f · ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
104 |
71 74 78 79 79 80 81
|
ofco |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) ) → ( ( 𝑎 ∘f · 𝑏 ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) = ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f · ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) ) |
105 |
104
|
eleq1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) ) → ( ( ( 𝑎 ∘f · 𝑏 ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ↔ ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∘f · ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
106 |
103 105
|
sylibrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) ) → ( ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) → ( ( 𝑎 ∘f · 𝑏 ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
107 |
106
|
expimpd |
⊢ ( 𝜑 → ( ( ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ 𝑏 ∈ ran ( 1o eval 𝑅 ) ) ∧ ( ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) → ( ( 𝑎 ∘f · 𝑏 ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
108 |
37 107
|
syl5bi |
⊢ ( 𝜑 → ( ( ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ∧ ( 𝑏 ∈ ran ( 1o eval 𝑅 ) ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) → ( ( 𝑎 ∘f · 𝑏 ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
109 |
108
|
imp |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ran ( 1o eval 𝑅 ) ∧ ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ∧ ( 𝑏 ∈ ran ( 1o eval 𝑅 ) ∧ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) ) → ( ( 𝑎 ∘f · 𝑏 ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) |
110 |
|
coeq1 |
⊢ ( 𝑦 = ( ( 𝐵 ↑m 1o ) × { 𝑎 } ) → ( 𝑦 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) = ( ( ( 𝐵 ↑m 1o ) × { 𝑎 } ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) |
111 |
110
|
eleq1d |
⊢ ( 𝑦 = ( ( 𝐵 ↑m 1o ) × { 𝑎 } ) → ( ( 𝑦 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ↔ ( ( ( 𝐵 ↑m 1o ) × { 𝑎 } ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
112 |
|
coeq1 |
⊢ ( 𝑦 = ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ 𝑎 ) ) → ( 𝑦 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) = ( ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ 𝑎 ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) |
113 |
112
|
eleq1d |
⊢ ( 𝑦 = ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ 𝑎 ) ) → ( ( 𝑦 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ↔ ( ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ 𝑎 ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
114 |
|
coeq1 |
⊢ ( 𝑦 = 𝑎 → ( 𝑦 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) = ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) |
115 |
114
|
eleq1d |
⊢ ( 𝑦 = 𝑎 → ( ( 𝑦 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ↔ ( 𝑎 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
116 |
|
coeq1 |
⊢ ( 𝑦 = 𝑏 → ( 𝑦 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) = ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) |
117 |
116
|
eleq1d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝑦 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ↔ ( 𝑏 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
118 |
|
coeq1 |
⊢ ( 𝑦 = ( 𝑎 ∘f + 𝑏 ) → ( 𝑦 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) = ( ( 𝑎 ∘f + 𝑏 ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) |
119 |
118
|
eleq1d |
⊢ ( 𝑦 = ( 𝑎 ∘f + 𝑏 ) → ( ( 𝑦 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ↔ ( ( 𝑎 ∘f + 𝑏 ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
120 |
|
coeq1 |
⊢ ( 𝑦 = ( 𝑎 ∘f · 𝑏 ) → ( 𝑦 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) = ( ( 𝑎 ∘f · 𝑏 ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) |
121 |
120
|
eleq1d |
⊢ ( 𝑦 = ( 𝑎 ∘f · 𝑏 ) → ( ( 𝑦 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ↔ ( ( 𝑎 ∘f · 𝑏 ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
122 |
|
coeq1 |
⊢ ( 𝑦 = ( 𝐴 ∘ ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ) → ( 𝑦 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) = ( ( 𝐴 ∘ ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) |
123 |
122
|
eleq1d |
⊢ ( 𝑦 = ( 𝐴 ∘ ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ) → ( ( 𝑦 ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ↔ ( ( 𝐴 ∘ ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
124 |
4
|
pf1rcl |
⊢ ( 𝐴 ∈ 𝑄 → 𝑅 ∈ CRing ) |
125 |
16 124
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
126 |
125
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑅 ∈ CRing ) |
127 |
|
1on |
⊢ 1o ∈ On |
128 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
129 |
128
|
mplassa |
⊢ ( ( 1o ∈ On ∧ 𝑅 ∈ CRing ) → ( 1o mPoly 𝑅 ) ∈ AssAlg ) |
130 |
127 125 129
|
sylancr |
⊢ ( 𝜑 → ( 1o mPoly 𝑅 ) ∈ AssAlg ) |
131 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
132 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) = ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) |
133 |
131 132
|
ply1ascl |
⊢ ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) = ( algSc ‘ ( 1o mPoly 𝑅 ) ) |
134 |
|
eqid |
⊢ ( Scalar ‘ ( 1o mPoly 𝑅 ) ) = ( Scalar ‘ ( 1o mPoly 𝑅 ) ) |
135 |
133 134
|
asclrhm |
⊢ ( ( 1o mPoly 𝑅 ) ∈ AssAlg → ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ∈ ( ( Scalar ‘ ( 1o mPoly 𝑅 ) ) RingHom ( 1o mPoly 𝑅 ) ) ) |
136 |
130 135
|
syl |
⊢ ( 𝜑 → ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ∈ ( ( Scalar ‘ ( 1o mPoly 𝑅 ) ) RingHom ( 1o mPoly 𝑅 ) ) ) |
137 |
127
|
a1i |
⊢ ( 𝜑 → 1o ∈ On ) |
138 |
128 137 125
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ ( 1o mPoly 𝑅 ) ) ) |
139 |
138
|
oveq1d |
⊢ ( 𝜑 → ( 𝑅 RingHom ( 1o mPoly 𝑅 ) ) = ( ( Scalar ‘ ( 1o mPoly 𝑅 ) ) RingHom ( 1o mPoly 𝑅 ) ) ) |
140 |
136 139
|
eleqtrrd |
⊢ ( 𝜑 → ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ∈ ( 𝑅 RingHom ( 1o mPoly 𝑅 ) ) ) |
141 |
|
eqid |
⊢ ( Base ‘ ( 1o mPoly 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
142 |
1 141
|
rhmf |
⊢ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ∈ ( 𝑅 RingHom ( 1o mPoly 𝑅 ) ) → ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) : 𝐵 ⟶ ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
143 |
140 142
|
syl |
⊢ ( 𝜑 → ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) : 𝐵 ⟶ ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
144 |
143
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑎 ) ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
145 |
|
eqid |
⊢ ( eval1 ‘ 𝑅 ) = ( eval1 ‘ 𝑅 ) |
146 |
145 34 1 128 141
|
evl1val |
⊢ ( ( 𝑅 ∈ CRing ∧ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑎 ) ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) ) → ( ( eval1 ‘ 𝑅 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑎 ) ) = ( ( ( 1o eval 𝑅 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑎 ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) |
147 |
126 144 146
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( eval1 ‘ 𝑅 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑎 ) ) = ( ( ( 1o eval 𝑅 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑎 ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) |
148 |
145 131 1 132
|
evl1sca |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑎 ∈ 𝐵 ) → ( ( eval1 ‘ 𝑅 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑎 ) ) = ( 𝐵 × { 𝑎 } ) ) |
149 |
125 148
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( eval1 ‘ 𝑅 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑎 ) ) = ( 𝐵 × { 𝑎 } ) ) |
150 |
1
|
ressid |
⊢ ( 𝑅 ∈ CRing → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
151 |
126 150
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
152 |
151
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) = ( 1o mPoly 𝑅 ) ) |
153 |
152
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) = ( algSc ‘ ( 1o mPoly 𝑅 ) ) ) |
154 |
153 133
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) = ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ) |
155 |
154
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) ‘ 𝑎 ) = ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑎 ) ) |
156 |
155
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 1o eval 𝑅 ) ‘ ( ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) ‘ 𝑎 ) ) = ( ( 1o eval 𝑅 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑎 ) ) ) |
157 |
|
eqid |
⊢ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) = ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) |
158 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) |
159 |
|
eqid |
⊢ ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) = ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) |
160 |
127
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 1o ∈ On ) |
161 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
162 |
1
|
subrgid |
⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
163 |
125 161 162
|
3syl |
⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
164 |
163
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
165 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) |
166 |
35 157 158 1 159 160 126 164 165
|
evlssca |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 1o eval 𝑅 ) ‘ ( ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) ‘ 𝑎 ) ) = ( ( 𝐵 ↑m 1o ) × { 𝑎 } ) ) |
167 |
156 166
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 1o eval 𝑅 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑎 ) ) = ( ( 𝐵 ↑m 1o ) × { 𝑎 } ) ) |
168 |
167
|
coeq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 1o eval 𝑅 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑎 ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) = ( ( ( 𝐵 ↑m 1o ) × { 𝑎 } ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) |
169 |
147 149 168
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐵 × { 𝑎 } ) = ( ( ( 𝐵 ↑m 1o ) × { 𝑎 } ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) |
170 |
|
snex |
⊢ { 𝑓 } ∈ V |
171 |
19 170
|
xpex |
⊢ ( 𝐵 × { 𝑓 } ) ∈ V |
172 |
171 7
|
elab |
⊢ ( ( 𝐵 × { 𝑓 } ) ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜒 ) |
173 |
14 172
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) → ( 𝐵 × { 𝑓 } ) ∈ { 𝑥 ∣ 𝜓 } ) |
174 |
173
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( 𝐵 × { 𝑓 } ) ∈ { 𝑥 ∣ 𝜓 } ) |
175 |
|
sneq |
⊢ ( 𝑓 = 𝑎 → { 𝑓 } = { 𝑎 } ) |
176 |
175
|
xpeq2d |
⊢ ( 𝑓 = 𝑎 → ( 𝐵 × { 𝑓 } ) = ( 𝐵 × { 𝑎 } ) ) |
177 |
176
|
eleq1d |
⊢ ( 𝑓 = 𝑎 → ( ( 𝐵 × { 𝑓 } ) ∈ { 𝑥 ∣ 𝜓 } ↔ ( 𝐵 × { 𝑎 } ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
178 |
177
|
rspccva |
⊢ ( ( ∀ 𝑓 ∈ 𝐵 ( 𝐵 × { 𝑓 } ) ∈ { 𝑥 ∣ 𝜓 } ∧ 𝑎 ∈ 𝐵 ) → ( 𝐵 × { 𝑎 } ) ∈ { 𝑥 ∣ 𝜓 } ) |
179 |
174 178
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐵 × { 𝑎 } ) ∈ { 𝑥 ∣ 𝜓 } ) |
180 |
169 179
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝐵 ↑m 1o ) × { 𝑎 } ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) |
181 |
|
resiexg |
⊢ ( 𝐵 ∈ V → ( I ↾ 𝐵 ) ∈ V ) |
182 |
19 181
|
ax-mp |
⊢ ( I ↾ 𝐵 ) ∈ V |
183 |
182 8
|
elab |
⊢ ( ( I ↾ 𝐵 ) ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜃 ) |
184 |
15 183
|
sylibr |
⊢ ( 𝜑 → ( I ↾ 𝐵 ) ∈ { 𝑥 ∣ 𝜓 } ) |
185 |
27 184
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) |
186 |
|
el1o |
⊢ ( 𝑎 ∈ 1o ↔ 𝑎 = ∅ ) |
187 |
|
fveq2 |
⊢ ( 𝑎 = ∅ → ( 𝑏 ‘ 𝑎 ) = ( 𝑏 ‘ ∅ ) ) |
188 |
186 187
|
sylbi |
⊢ ( 𝑎 ∈ 1o → ( 𝑏 ‘ 𝑎 ) = ( 𝑏 ‘ ∅ ) ) |
189 |
188
|
mpteq2dv |
⊢ ( 𝑎 ∈ 1o → ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ 𝑎 ) ) = ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ) |
190 |
189
|
coeq1d |
⊢ ( 𝑎 ∈ 1o → ( ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ 𝑎 ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) = ( ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ) |
191 |
190
|
eleq1d |
⊢ ( 𝑎 ∈ 1o → ( ( ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ 𝑎 ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ↔ ( ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
192 |
185 191
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑎 ∈ 1o → ( ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ 𝑎 ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) ) |
193 |
192
|
imp |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 1o ) → ( ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ 𝑎 ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) |
194 |
4 1 38
|
pf1mpf |
⊢ ( 𝐴 ∈ 𝑄 → ( 𝐴 ∘ ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ) ∈ ran ( 1o eval 𝑅 ) ) |
195 |
16 194
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∘ ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ) ∈ ran ( 1o eval 𝑅 ) ) |
196 |
1 2 3 36 87 109 111 113 115 117 119 121 123 180 193 195
|
mpfind |
⊢ ( 𝜑 → ( ( 𝐴 ∘ ( 𝑏 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑏 ‘ ∅ ) ) ) ∘ ( 𝑤 ∈ 𝐵 ↦ ( 1o × { 𝑤 } ) ) ) ∈ { 𝑥 ∣ 𝜓 } ) |
197 |
33 196
|
eqeltrrd |
⊢ ( 𝜑 → 𝐴 ∈ { 𝑥 ∣ 𝜓 } ) |
198 |
13
|
elabg |
⊢ ( 𝐴 ∈ 𝑄 → ( 𝐴 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜌 ) ) |
199 |
16 198
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜌 ) ) |
200 |
197 199
|
mpbid |
⊢ ( 𝜑 → 𝜌 ) |