Step |
Hyp |
Ref |
Expression |
1 |
|
pf1rcl.q |
⊢ 𝑄 = ran ( eval1 ‘ 𝑅 ) |
2 |
|
pf1f.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
mpfpf1.q |
⊢ 𝐸 = ran ( 1o eval 𝑅 ) |
4 |
1
|
pf1rcl |
⊢ ( 𝐹 ∈ 𝑄 → 𝑅 ∈ CRing ) |
5 |
|
id |
⊢ ( 𝐹 ∈ 𝑄 → 𝐹 ∈ 𝑄 ) |
6 |
5 1
|
eleqtrdi |
⊢ ( 𝐹 ∈ 𝑄 → 𝐹 ∈ ran ( eval1 ‘ 𝑅 ) ) |
7 |
|
eqid |
⊢ ( eval1 ‘ 𝑅 ) = ( eval1 ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐵 ) = ( 𝑅 ↑s 𝐵 ) |
10 |
7 8 9 2
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
11 |
4 10
|
syl |
⊢ ( 𝐹 ∈ 𝑄 → ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
12 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
13 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) |
14 |
12 13
|
rhmf |
⊢ ( ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) → ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
15 |
|
ffn |
⊢ ( ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) → ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
16 |
|
fvelrnb |
⊢ ( ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) → ( 𝐹 ∈ ran ( eval1 ‘ 𝑅 ) ↔ ∃ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) = 𝐹 ) ) |
17 |
11 14 15 16
|
4syl |
⊢ ( 𝐹 ∈ 𝑄 → ( 𝐹 ∈ ran ( eval1 ‘ 𝑅 ) ↔ ∃ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) = 𝐹 ) ) |
18 |
6 17
|
mpbid |
⊢ ( 𝐹 ∈ 𝑄 → ∃ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) = 𝐹 ) |
19 |
|
eqid |
⊢ ( 1o eval 𝑅 ) = ( 1o eval 𝑅 ) |
20 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
21 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
22 |
8 21 12
|
ply1bas |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
23 |
7 19 2 20 22
|
evl1val |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) = ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( 𝑧 ∈ 𝐵 ↦ ( 1o × { 𝑧 } ) ) ) ) |
24 |
23
|
coeq1d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( 𝑧 ∈ 𝐵 ↦ ( 1o × { 𝑧 } ) ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ) |
25 |
|
coass |
⊢ ( ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( 𝑧 ∈ 𝐵 ↦ ( 1o × { 𝑧 } ) ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( ( 𝑧 ∈ 𝐵 ↦ ( 1o × { 𝑧 } ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ) |
26 |
|
df1o2 |
⊢ 1o = { ∅ } |
27 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
28 |
|
0ex |
⊢ ∅ ∈ V |
29 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) = ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) |
30 |
26 27 28 29
|
mapsncnv |
⊢ ◡ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) = ( 𝑧 ∈ 𝐵 ↦ ( 1o × { 𝑧 } ) ) |
31 |
30
|
coeq1i |
⊢ ( ◡ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( ( 𝑧 ∈ 𝐵 ↦ ( 1o × { 𝑧 } ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) |
32 |
26 27 28 29
|
mapsnf1o2 |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ( 𝐵 ↑m 1o ) –1-1-onto→ 𝐵 |
33 |
|
f1ococnv1 |
⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ( 𝐵 ↑m 1o ) –1-1-onto→ 𝐵 → ( ◡ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( I ↾ ( 𝐵 ↑m 1o ) ) ) |
34 |
32 33
|
mp1i |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ◡ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( I ↾ ( 𝐵 ↑m 1o ) ) ) |
35 |
31 34
|
eqtr3id |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( 𝑧 ∈ 𝐵 ↦ ( 1o × { 𝑧 } ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( I ↾ ( 𝐵 ↑m 1o ) ) ) |
36 |
35
|
coeq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( ( 𝑧 ∈ 𝐵 ↦ ( 1o × { 𝑧 } ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ) = ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( I ↾ ( 𝐵 ↑m 1o ) ) ) ) |
37 |
25 36
|
syl5eq |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( 𝑧 ∈ 𝐵 ↦ ( 1o × { 𝑧 } ) ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( I ↾ ( 𝐵 ↑m 1o ) ) ) ) |
38 |
|
eqid |
⊢ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) = ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) |
39 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) |
40 |
|
simpl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → 𝑅 ∈ CRing ) |
41 |
|
ovexd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( 𝐵 ↑m 1o ) ∈ V ) |
42 |
|
1on |
⊢ 1o ∈ On |
43 |
19 2 20 38
|
evlrhm |
⊢ ( ( 1o ∈ On ∧ 𝑅 ∈ CRing ) → ( 1o eval 𝑅 ) ∈ ( ( 1o mPoly 𝑅 ) RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
44 |
42 43
|
mpan |
⊢ ( 𝑅 ∈ CRing → ( 1o eval 𝑅 ) ∈ ( ( 1o mPoly 𝑅 ) RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
45 |
22 39
|
rhmf |
⊢ ( ( 1o eval 𝑅 ) ∈ ( ( 1o mPoly 𝑅 ) RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) → ( 1o eval 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
46 |
44 45
|
syl |
⊢ ( 𝑅 ∈ CRing → ( 1o eval 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
47 |
46
|
ffvelrnda |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
48 |
38 2 39 40 41 47
|
pwselbas |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( 1o eval 𝑅 ) ‘ 𝑦 ) : ( 𝐵 ↑m 1o ) ⟶ 𝐵 ) |
49 |
|
fcoi1 |
⊢ ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) : ( 𝐵 ↑m 1o ) ⟶ 𝐵 → ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( I ↾ ( 𝐵 ↑m 1o ) ) ) = ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ) |
50 |
48 49
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( I ↾ ( 𝐵 ↑m 1o ) ) ) = ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ) |
51 |
24 37 50
|
3eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ) |
52 |
46
|
ffnd |
⊢ ( 𝑅 ∈ CRing → ( 1o eval 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
53 |
|
fnfvelrn |
⊢ ( ( ( 1o eval 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∈ ran ( 1o eval 𝑅 ) ) |
54 |
52 53
|
sylan |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∈ ran ( 1o eval 𝑅 ) ) |
55 |
54 3
|
eleqtrrdi |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∈ 𝐸 ) |
56 |
51 55
|
eqeltrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ∈ 𝐸 ) |
57 |
|
coeq1 |
⊢ ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) = 𝐹 → ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( 𝐹 ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ) |
58 |
57
|
eleq1d |
⊢ ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) = 𝐹 → ( ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ∈ 𝐸 ↔ ( 𝐹 ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ∈ 𝐸 ) ) |
59 |
56 58
|
syl5ibcom |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) = 𝐹 → ( 𝐹 ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ∈ 𝐸 ) ) |
60 |
59
|
rexlimdva |
⊢ ( 𝑅 ∈ CRing → ( ∃ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) = 𝐹 → ( 𝐹 ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ∈ 𝐸 ) ) |
61 |
4 18 60
|
sylc |
⊢ ( 𝐹 ∈ 𝑄 → ( 𝐹 ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ∈ 𝐸 ) |