Step |
Hyp |
Ref |
Expression |
1 |
|
pf1rcl.q |
⊢ 𝑄 = ran ( eval1 ‘ 𝑅 ) |
2 |
|
pf1mulcl.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) = ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) |
4 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) = ( Base ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) |
5 |
1
|
pf1rcl |
⊢ ( 𝐹 ∈ 𝑄 → 𝑅 ∈ CRing ) |
6 |
5
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄 ) → 𝑅 ∈ CRing ) |
7 |
|
fvexd |
⊢ ( ( 𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄 ) → ( Base ‘ 𝑅 ) ∈ V ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
9 |
1 8
|
pf1f |
⊢ ( 𝐹 ∈ 𝑄 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
11 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
12 |
3 8 4
|
pwselbasb |
⊢ ( ( 𝑅 ∈ CRing ∧ ( Base ‘ 𝑅 ) ∈ V ) → ( 𝐹 ∈ ( Base ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) ↔ 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
13 |
6 11 12
|
sylancl |
⊢ ( ( 𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄 ) → ( 𝐹 ∈ ( Base ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) ↔ 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
14 |
10 13
|
mpbird |
⊢ ( ( 𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄 ) → 𝐹 ∈ ( Base ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) ) |
15 |
1 8
|
pf1f |
⊢ ( 𝐺 ∈ 𝑄 → 𝐺 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄 ) → 𝐺 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
17 |
3 8 4
|
pwselbasb |
⊢ ( ( 𝑅 ∈ CRing ∧ ( Base ‘ 𝑅 ) ∈ V ) → ( 𝐺 ∈ ( Base ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) ↔ 𝐺 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
18 |
6 11 17
|
sylancl |
⊢ ( ( 𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄 ) → ( 𝐺 ∈ ( Base ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) ↔ 𝐺 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
19 |
16 18
|
mpbird |
⊢ ( ( 𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄 ) → 𝐺 ∈ ( Base ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) ) |
20 |
|
eqid |
⊢ ( .r ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) = ( .r ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) |
21 |
3 4 6 7 14 19 2 20
|
pwsmulrval |
⊢ ( ( 𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄 ) → ( 𝐹 ( .r ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) 𝐺 ) = ( 𝐹 ∘f · 𝐺 ) ) |
22 |
8 1
|
pf1subrg |
⊢ ( 𝑅 ∈ CRing → 𝑄 ∈ ( SubRing ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) ) |
23 |
6 22
|
syl |
⊢ ( ( 𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄 ) → 𝑄 ∈ ( SubRing ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) ) |
24 |
20
|
subrgmcl |
⊢ ( ( 𝑄 ∈ ( SubRing ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) ∧ 𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄 ) → ( 𝐹 ( .r ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) 𝐺 ) ∈ 𝑄 ) |
25 |
24
|
3expib |
⊢ ( 𝑄 ∈ ( SubRing ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) → ( ( 𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄 ) → ( 𝐹 ( .r ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) 𝐺 ) ∈ 𝑄 ) ) |
26 |
23 25
|
mpcom |
⊢ ( ( 𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄 ) → ( 𝐹 ( .r ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) 𝐺 ) ∈ 𝑄 ) |
27 |
21 26
|
eqeltrrd |
⊢ ( ( 𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄 ) → ( 𝐹 ∘f · 𝐺 ) ∈ 𝑄 ) |