| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pf1rcl.q | 
							⊢ 𝑄  =  ran  ( eval1 ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							n0i | 
							⊢ ( 𝑋  ∈  𝑄  →  ¬  𝑄  =  ∅ )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( eval1 ‘ 𝑅 )  =  ( eval1 ‘ 𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( 1o  eval  𝑅 )  =  ( 1o  eval  𝑅 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							evl1fval | 
							⊢ ( eval1 ‘ 𝑅 )  =  ( ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( Base ‘ 𝑅 )  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  ∘  ( 1o  eval  𝑅 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							rneqi | 
							⊢ ran  ( eval1 ‘ 𝑅 )  =  ran  ( ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( Base ‘ 𝑅 )  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  ∘  ( 1o  eval  𝑅 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							rnco2 | 
							⊢ ran  ( ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( Base ‘ 𝑅 )  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  ∘  ( 1o  eval  𝑅 ) )  =  ( ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( Base ‘ 𝑅 )  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  “  ran  ( 1o  eval  𝑅 ) )  | 
						
						
							| 9 | 
							
								1 7 8
							 | 
							3eqtri | 
							⊢ 𝑄  =  ( ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( Base ‘ 𝑅 )  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  “  ran  ( 1o  eval  𝑅 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							inss2 | 
							⊢ ( dom  ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( Base ‘ 𝑅 )  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  ∩  ran  ( 1o  eval  𝑅 ) )  ⊆  ran  ( 1o  eval  𝑅 )  | 
						
						
							| 11 | 
							
								
							 | 
							neq0 | 
							⊢ ( ¬  ran  ( 1o  eval  𝑅 )  =  ∅  ↔  ∃ 𝑥 𝑥  ∈  ran  ( 1o  eval  𝑅 ) )  | 
						
						
							| 12 | 
							
								4 5
							 | 
							evlval | 
							⊢ ( 1o  eval  𝑅 )  =  ( ( 1o  evalSub  𝑅 ) ‘ ( Base ‘ 𝑅 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							rneqi | 
							⊢ ran  ( 1o  eval  𝑅 )  =  ran  ( ( 1o  evalSub  𝑅 ) ‘ ( Base ‘ 𝑅 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							mpfrcl | 
							⊢ ( 𝑥  ∈  ran  ( 1o  eval  𝑅 )  →  ( 1o  ∈  V  ∧  𝑅  ∈  CRing  ∧  ( Base ‘ 𝑅 )  ∈  ( SubRing ‘ 𝑅 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							simp2d | 
							⊢ ( 𝑥  ∈  ran  ( 1o  eval  𝑅 )  →  𝑅  ∈  CRing )  | 
						
						
							| 16 | 
							
								15
							 | 
							exlimiv | 
							⊢ ( ∃ 𝑥 𝑥  ∈  ran  ( 1o  eval  𝑅 )  →  𝑅  ∈  CRing )  | 
						
						
							| 17 | 
							
								11 16
							 | 
							sylbi | 
							⊢ ( ¬  ran  ( 1o  eval  𝑅 )  =  ∅  →  𝑅  ∈  CRing )  | 
						
						
							| 18 | 
							
								17
							 | 
							con1i | 
							⊢ ( ¬  𝑅  ∈  CRing  →  ran  ( 1o  eval  𝑅 )  =  ∅ )  | 
						
						
							| 19 | 
							
								
							 | 
							sseq0 | 
							⊢ ( ( ( dom  ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( Base ‘ 𝑅 )  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  ∩  ran  ( 1o  eval  𝑅 ) )  ⊆  ran  ( 1o  eval  𝑅 )  ∧  ran  ( 1o  eval  𝑅 )  =  ∅ )  →  ( dom  ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( Base ‘ 𝑅 )  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  ∩  ran  ( 1o  eval  𝑅 ) )  =  ∅ )  | 
						
						
							| 20 | 
							
								10 18 19
							 | 
							sylancr | 
							⊢ ( ¬  𝑅  ∈  CRing  →  ( dom  ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( Base ‘ 𝑅 )  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  ∩  ran  ( 1o  eval  𝑅 ) )  =  ∅ )  | 
						
						
							| 21 | 
							
								
							 | 
							imadisj | 
							⊢ ( ( ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( Base ‘ 𝑅 )  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  “  ran  ( 1o  eval  𝑅 ) )  =  ∅  ↔  ( dom  ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( Base ‘ 𝑅 )  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  ∩  ran  ( 1o  eval  𝑅 ) )  =  ∅ )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							sylibr | 
							⊢ ( ¬  𝑅  ∈  CRing  →  ( ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( Base ‘ 𝑅 )  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  “  ran  ( 1o  eval  𝑅 ) )  =  ∅ )  | 
						
						
							| 23 | 
							
								9 22
							 | 
							eqtrid | 
							⊢ ( ¬  𝑅  ∈  CRing  →  𝑄  =  ∅ )  | 
						
						
							| 24 | 
							
								2 23
							 | 
							nsyl2 | 
							⊢ ( 𝑋  ∈  𝑄  →  𝑅  ∈  CRing )  |