Step |
Hyp |
Ref |
Expression |
1 |
|
pf1const.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
pf1const.q |
⊢ 𝑄 = ran ( eval1 ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( eval1 ‘ 𝑅 ) = ( eval1 ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐵 ) = ( 𝑅 ↑s 𝐵 ) |
6 |
3 4 5 1
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
7 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
8 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) |
9 |
7 8
|
rhmf |
⊢ ( ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) → ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
10 |
|
ffn |
⊢ ( ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) → ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
11 |
|
fnima |
⊢ ( ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) → ( ( eval1 ‘ 𝑅 ) “ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) = ran ( eval1 ‘ 𝑅 ) ) |
12 |
6 9 10 11
|
4syl |
⊢ ( 𝑅 ∈ CRing → ( ( eval1 ‘ 𝑅 ) “ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) = ran ( eval1 ‘ 𝑅 ) ) |
13 |
12 2
|
eqtr4di |
⊢ ( 𝑅 ∈ CRing → ( ( eval1 ‘ 𝑅 ) “ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) = 𝑄 ) |
14 |
4
|
ply1assa |
⊢ ( 𝑅 ∈ CRing → ( Poly1 ‘ 𝑅 ) ∈ AssAlg ) |
15 |
|
assaring |
⊢ ( ( Poly1 ‘ 𝑅 ) ∈ AssAlg → ( Poly1 ‘ 𝑅 ) ∈ Ring ) |
16 |
7
|
subrgid |
⊢ ( ( Poly1 ‘ 𝑅 ) ∈ Ring → ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∈ ( SubRing ‘ ( Poly1 ‘ 𝑅 ) ) ) |
17 |
14 15 16
|
3syl |
⊢ ( 𝑅 ∈ CRing → ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∈ ( SubRing ‘ ( Poly1 ‘ 𝑅 ) ) ) |
18 |
|
rhmima |
⊢ ( ( ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) ∧ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∈ ( SubRing ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( eval1 ‘ 𝑅 ) “ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) ∈ ( SubRing ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
19 |
6 17 18
|
syl2anc |
⊢ ( 𝑅 ∈ CRing → ( ( eval1 ‘ 𝑅 ) “ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) ∈ ( SubRing ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
20 |
13 19
|
eqeltrrd |
⊢ ( 𝑅 ∈ CRing → 𝑄 ∈ ( SubRing ‘ ( 𝑅 ↑s 𝐵 ) ) ) |