Step |
Hyp |
Ref |
Expression |
1 |
|
swrdccatin2.l |
⊢ 𝐿 = ( ♯ ‘ 𝐴 ) |
2 |
|
ccatcl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ) |
3 |
2
|
adantr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ( 0 ... 𝐿 ) ∧ 𝑁 ∈ ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) ) → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ) |
4 |
|
elfz0fzfz0 |
⊢ ( ( 𝑀 ∈ ( 0 ... 𝐿 ) ∧ 𝑁 ∈ ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) → 𝑀 ∈ ( 0 ... 𝑁 ) ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ( 0 ... 𝐿 ) ∧ 𝑁 ∈ ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) ) → 𝑀 ∈ ( 0 ... 𝑁 ) ) |
6 |
|
elfzuz2 |
⊢ ( 𝑀 ∈ ( 0 ... 𝐿 ) → 𝐿 ∈ ( ℤ≥ ‘ 0 ) ) |
7 |
|
fzss1 |
⊢ ( 𝐿 ∈ ( ℤ≥ ‘ 0 ) → ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ⊆ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) |
8 |
6 7
|
syl |
⊢ ( 𝑀 ∈ ( 0 ... 𝐿 ) → ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ⊆ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) |
9 |
8
|
sselda |
⊢ ( ( 𝑀 ∈ ( 0 ... 𝐿 ) ∧ 𝑁 ∈ ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) → 𝑁 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) |
10 |
|
ccatlen |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
11 |
1
|
oveq1i |
⊢ ( 𝐿 + ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) |
12 |
10 11
|
eqtr4di |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) |
13 |
12
|
oveq2d |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) = ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) |
14 |
13
|
eleq2d |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ↔ 𝑁 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) ) |
15 |
9 14
|
syl5ibr |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( 𝑀 ∈ ( 0 ... 𝐿 ) ∧ 𝑁 ∈ ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) ) |
16 |
15
|
imp |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ( 0 ... 𝐿 ) ∧ 𝑁 ∈ ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) |
17 |
3 5 16
|
3jca |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ( 0 ... 𝐿 ) ∧ 𝑁 ∈ ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) ) → ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) ) |