Step |
Hyp |
Ref |
Expression |
1 |
|
swrdccatin2.l |
⊢ 𝐿 = ( ♯ ‘ 𝐴 ) |
2 |
|
3simpa |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... 𝐿 ) ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ) |
3 |
|
elfznn0 |
⊢ ( 𝑁 ∈ ( 0 ... 𝐿 ) → 𝑁 ∈ ℕ0 ) |
4 |
|
0elfz |
⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) |
5 |
3 4
|
syl |
⊢ ( 𝑁 ∈ ( 0 ... 𝐿 ) → 0 ∈ ( 0 ... 𝑁 ) ) |
6 |
1
|
oveq2i |
⊢ ( 0 ... 𝐿 ) = ( 0 ... ( ♯ ‘ 𝐴 ) ) |
7 |
6
|
eleq2i |
⊢ ( 𝑁 ∈ ( 0 ... 𝐿 ) ↔ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) |
8 |
7
|
biimpi |
⊢ ( 𝑁 ∈ ( 0 ... 𝐿 ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) |
9 |
5 8
|
jca |
⊢ ( 𝑁 ∈ ( 0 ... 𝐿 ) → ( 0 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) |
10 |
9
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... 𝐿 ) ) → ( 0 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) |
11 |
|
swrdccatin1 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( 0 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 0 , 𝑁 〉 ) = ( 𝐴 substr 〈 0 , 𝑁 〉 ) ) ) |
12 |
2 10 11
|
sylc |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... 𝐿 ) ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 0 , 𝑁 〉 ) = ( 𝐴 substr 〈 0 , 𝑁 〉 ) ) |
13 |
|
ccatcl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ) |
14 |
13
|
3adant3 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... 𝐿 ) ) → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ) |
15 |
3
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... 𝐿 ) ) → 𝑁 ∈ ℕ0 ) |
16 |
14 15
|
jca |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... 𝐿 ) ) → ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) |
17 |
|
pfxval |
⊢ ( ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 ++ 𝐵 ) prefix 𝑁 ) = ( ( 𝐴 ++ 𝐵 ) substr 〈 0 , 𝑁 〉 ) ) |
18 |
16 17
|
syl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... 𝐿 ) ) → ( ( 𝐴 ++ 𝐵 ) prefix 𝑁 ) = ( ( 𝐴 ++ 𝐵 ) substr 〈 0 , 𝑁 〉 ) ) |
19 |
|
pfxval |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 prefix 𝑁 ) = ( 𝐴 substr 〈 0 , 𝑁 〉 ) ) |
20 |
3 19
|
sylan2 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... 𝐿 ) ) → ( 𝐴 prefix 𝑁 ) = ( 𝐴 substr 〈 0 , 𝑁 〉 ) ) |
21 |
20
|
3adant2 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... 𝐿 ) ) → ( 𝐴 prefix 𝑁 ) = ( 𝐴 substr 〈 0 , 𝑁 〉 ) ) |
22 |
12 18 21
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... 𝐿 ) ) → ( ( 𝐴 ++ 𝐵 ) prefix 𝑁 ) = ( 𝐴 prefix 𝑁 ) ) |