Step |
Hyp |
Ref |
Expression |
1 |
|
swrdccatin2.l |
⊢ 𝐿 = ( ♯ ‘ 𝐴 ) |
2 |
|
pfxccatpfx2.m |
⊢ 𝑀 = ( ♯ ‘ 𝐵 ) |
3 |
|
ccatcl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ) |
4 |
3
|
3adant3 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( ( 𝐿 + 1 ) ... ( 𝐿 + 𝑀 ) ) ) → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ) |
5 |
|
lencl |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
6 |
1 5
|
eqeltrid |
⊢ ( 𝐴 ∈ Word 𝑉 → 𝐿 ∈ ℕ0 ) |
7 |
|
elfzuz |
⊢ ( 𝑁 ∈ ( ( 𝐿 + 1 ) ... ( 𝐿 + 𝑀 ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝐿 + 1 ) ) ) |
8 |
|
peano2nn0 |
⊢ ( 𝐿 ∈ ℕ0 → ( 𝐿 + 1 ) ∈ ℕ0 ) |
9 |
8
|
anim1i |
⊢ ( ( 𝐿 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐿 + 1 ) ) ) → ( ( 𝐿 + 1 ) ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐿 + 1 ) ) ) ) |
10 |
6 7 9
|
syl2an |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑁 ∈ ( ( 𝐿 + 1 ) ... ( 𝐿 + 𝑀 ) ) ) → ( ( 𝐿 + 1 ) ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐿 + 1 ) ) ) ) |
11 |
10
|
3adant2 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( ( 𝐿 + 1 ) ... ( 𝐿 + 𝑀 ) ) ) → ( ( 𝐿 + 1 ) ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐿 + 1 ) ) ) ) |
12 |
|
eluznn0 |
⊢ ( ( ( 𝐿 + 1 ) ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐿 + 1 ) ) ) → 𝑁 ∈ ℕ0 ) |
13 |
11 12
|
syl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( ( 𝐿 + 1 ) ... ( 𝐿 + 𝑀 ) ) ) → 𝑁 ∈ ℕ0 ) |
14 |
|
pfxval |
⊢ ( ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 ++ 𝐵 ) prefix 𝑁 ) = ( ( 𝐴 ++ 𝐵 ) substr 〈 0 , 𝑁 〉 ) ) |
15 |
4 13 14
|
syl2anc |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( ( 𝐿 + 1 ) ... ( 𝐿 + 𝑀 ) ) ) → ( ( 𝐴 ++ 𝐵 ) prefix 𝑁 ) = ( ( 𝐴 ++ 𝐵 ) substr 〈 0 , 𝑁 〉 ) ) |
16 |
|
3simpa |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( ( 𝐿 + 1 ) ... ( 𝐿 + 𝑀 ) ) ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ) |
17 |
6
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( ( 𝐿 + 1 ) ... ( 𝐿 + 𝑀 ) ) ) → 𝐿 ∈ ℕ0 ) |
18 |
|
0elfz |
⊢ ( 𝐿 ∈ ℕ0 → 0 ∈ ( 0 ... 𝐿 ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( ( 𝐿 + 1 ) ... ( 𝐿 + 𝑀 ) ) ) → 0 ∈ ( 0 ... 𝐿 ) ) |
20 |
5
|
nn0zd |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
21 |
1 20
|
eqeltrid |
⊢ ( 𝐴 ∈ Word 𝑉 → 𝐿 ∈ ℤ ) |
22 |
21
|
adantr |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → 𝐿 ∈ ℤ ) |
23 |
|
uzid |
⊢ ( 𝐿 ∈ ℤ → 𝐿 ∈ ( ℤ≥ ‘ 𝐿 ) ) |
24 |
22 23
|
syl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → 𝐿 ∈ ( ℤ≥ ‘ 𝐿 ) ) |
25 |
|
peano2uz |
⊢ ( 𝐿 ∈ ( ℤ≥ ‘ 𝐿 ) → ( 𝐿 + 1 ) ∈ ( ℤ≥ ‘ 𝐿 ) ) |
26 |
|
fzss1 |
⊢ ( ( 𝐿 + 1 ) ∈ ( ℤ≥ ‘ 𝐿 ) → ( ( 𝐿 + 1 ) ... ( 𝐿 + 𝑀 ) ) ⊆ ( 𝐿 ... ( 𝐿 + 𝑀 ) ) ) |
27 |
24 25 26
|
3syl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( 𝐿 + 1 ) ... ( 𝐿 + 𝑀 ) ) ⊆ ( 𝐿 ... ( 𝐿 + 𝑀 ) ) ) |
28 |
2
|
eqcomi |
⊢ ( ♯ ‘ 𝐵 ) = 𝑀 |
29 |
28
|
oveq2i |
⊢ ( 𝐿 + ( ♯ ‘ 𝐵 ) ) = ( 𝐿 + 𝑀 ) |
30 |
29
|
oveq2i |
⊢ ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) = ( 𝐿 ... ( 𝐿 + 𝑀 ) ) |
31 |
27 30
|
sseqtrrdi |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( 𝐿 + 1 ) ... ( 𝐿 + 𝑀 ) ) ⊆ ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) |
32 |
31
|
sseld |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( 𝑁 ∈ ( ( 𝐿 + 1 ) ... ( 𝐿 + 𝑀 ) ) → 𝑁 ∈ ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) ) |
33 |
32
|
3impia |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( ( 𝐿 + 1 ) ... ( 𝐿 + 𝑀 ) ) ) → 𝑁 ∈ ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) |
34 |
19 33
|
jca |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( ( 𝐿 + 1 ) ... ( 𝐿 + 𝑀 ) ) ) → ( 0 ∈ ( 0 ... 𝐿 ) ∧ 𝑁 ∈ ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) ) |
35 |
1
|
pfxccatin12 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( 0 ∈ ( 0 ... 𝐿 ) ∧ 𝑁 ∈ ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 0 , 𝑁 〉 ) = ( ( 𝐴 substr 〈 0 , 𝐿 〉 ) ++ ( 𝐵 prefix ( 𝑁 − 𝐿 ) ) ) ) ) |
36 |
16 34 35
|
sylc |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( ( 𝐿 + 1 ) ... ( 𝐿 + 𝑀 ) ) ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 0 , 𝑁 〉 ) = ( ( 𝐴 substr 〈 0 , 𝐿 〉 ) ++ ( 𝐵 prefix ( 𝑁 − 𝐿 ) ) ) ) |
37 |
1
|
opeq2i |
⊢ 〈 0 , 𝐿 〉 = 〈 0 , ( ♯ ‘ 𝐴 ) 〉 |
38 |
37
|
oveq2i |
⊢ ( 𝐴 substr 〈 0 , 𝐿 〉 ) = ( 𝐴 substr 〈 0 , ( ♯ ‘ 𝐴 ) 〉 ) |
39 |
|
pfxval |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) → ( 𝐴 prefix ( ♯ ‘ 𝐴 ) ) = ( 𝐴 substr 〈 0 , ( ♯ ‘ 𝐴 ) 〉 ) ) |
40 |
5 39
|
mpdan |
⊢ ( 𝐴 ∈ Word 𝑉 → ( 𝐴 prefix ( ♯ ‘ 𝐴 ) ) = ( 𝐴 substr 〈 0 , ( ♯ ‘ 𝐴 ) 〉 ) ) |
41 |
|
pfxid |
⊢ ( 𝐴 ∈ Word 𝑉 → ( 𝐴 prefix ( ♯ ‘ 𝐴 ) ) = 𝐴 ) |
42 |
40 41
|
eqtr3d |
⊢ ( 𝐴 ∈ Word 𝑉 → ( 𝐴 substr 〈 0 , ( ♯ ‘ 𝐴 ) 〉 ) = 𝐴 ) |
43 |
38 42
|
eqtrid |
⊢ ( 𝐴 ∈ Word 𝑉 → ( 𝐴 substr 〈 0 , 𝐿 〉 ) = 𝐴 ) |
44 |
43
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( ( 𝐿 + 1 ) ... ( 𝐿 + 𝑀 ) ) ) → ( 𝐴 substr 〈 0 , 𝐿 〉 ) = 𝐴 ) |
45 |
44
|
oveq1d |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( ( 𝐿 + 1 ) ... ( 𝐿 + 𝑀 ) ) ) → ( ( 𝐴 substr 〈 0 , 𝐿 〉 ) ++ ( 𝐵 prefix ( 𝑁 − 𝐿 ) ) ) = ( 𝐴 ++ ( 𝐵 prefix ( 𝑁 − 𝐿 ) ) ) ) |
46 |
15 36 45
|
3eqtrd |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( ( 𝐿 + 1 ) ... ( 𝐿 + 𝑀 ) ) ) → ( ( 𝐴 ++ 𝐵 ) prefix 𝑁 ) = ( 𝐴 ++ ( 𝐵 prefix ( 𝑁 − 𝐿 ) ) ) ) |