Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( ( 𝑆 prefix 𝐿 ) = ∅ → ( ( 𝑆 prefix 𝐿 ) ∈ Word 𝐴 ↔ ∅ ∈ Word 𝐴 ) ) |
2 |
|
n0 |
⊢ ( ( 𝑆 prefix 𝐿 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑆 prefix 𝐿 ) ) |
3 |
|
df-pfx |
⊢ prefix = ( 𝑠 ∈ V , 𝑙 ∈ ℕ0 ↦ ( 𝑠 substr 〈 0 , 𝑙 〉 ) ) |
4 |
3
|
elmpocl2 |
⊢ ( 𝑥 ∈ ( 𝑆 prefix 𝐿 ) → 𝐿 ∈ ℕ0 ) |
5 |
4
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝑆 prefix 𝐿 ) → 𝐿 ∈ ℕ0 ) |
6 |
2 5
|
sylbi |
⊢ ( ( 𝑆 prefix 𝐿 ) ≠ ∅ → 𝐿 ∈ ℕ0 ) |
7 |
|
pfxval |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 prefix 𝐿 ) = ( 𝑆 substr 〈 0 , 𝐿 〉 ) ) |
8 |
|
swrdcl |
⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 substr 〈 0 , 𝐿 〉 ) ∈ Word 𝐴 ) |
9 |
8
|
adantr |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 substr 〈 0 , 𝐿 〉 ) ∈ Word 𝐴 ) |
10 |
7 9
|
eqeltrd |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 prefix 𝐿 ) ∈ Word 𝐴 ) |
11 |
6 10
|
sylan2 |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑆 prefix 𝐿 ) ≠ ∅ ) → ( 𝑆 prefix 𝐿 ) ∈ Word 𝐴 ) |
12 |
|
wrd0 |
⊢ ∅ ∈ Word 𝐴 |
13 |
12
|
a1i |
⊢ ( 𝑆 ∈ Word 𝐴 → ∅ ∈ Word 𝐴 ) |
14 |
1 11 13
|
pm2.61ne |
⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 prefix 𝐿 ) ∈ Word 𝐴 ) |