| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfznn0 | ⊢ ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 2 | 1 | 3ad2ant2 | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 3 |  | 0elfz | ⊢ ( 𝑁  ∈  ℕ0  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 5 |  | simp2 | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 6 | 4 5 | jca | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 0  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 7 |  | swrdco | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  ( 0  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  ( 𝑊  substr  〈 0 ,  𝑁 〉 ) )  =  ( ( 𝐹  ∘  𝑊 )  substr  〈 0 ,  𝑁 〉 ) ) | 
						
							| 8 | 6 7 | syld3an2 | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  ( 𝑊  substr  〈 0 ,  𝑁 〉 ) )  =  ( ( 𝐹  ∘  𝑊 )  substr  〈 0 ,  𝑁 〉 ) ) | 
						
							| 9 |  | pfxval | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  prefix  𝑁 )  =  ( 𝑊  substr  〈 0 ,  𝑁 〉 ) ) | 
						
							| 10 | 1 9 | sylan2 | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  prefix  𝑁 )  =  ( 𝑊  substr  〈 0 ,  𝑁 〉 ) ) | 
						
							| 11 | 10 | coeq2d | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝐹  ∘  ( 𝑊  prefix  𝑁 ) )  =  ( 𝐹  ∘  ( 𝑊  substr  〈 0 ,  𝑁 〉 ) ) ) | 
						
							| 12 | 11 | 3adant3 | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  ( 𝑊  prefix  𝑁 ) )  =  ( 𝐹  ∘  ( 𝑊  substr  〈 0 ,  𝑁 〉 ) ) ) | 
						
							| 13 |  | ffun | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  Fun  𝐹 ) | 
						
							| 14 | 13 | anim2i | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝑊  ∈  Word  𝐴  ∧  Fun  𝐹 ) ) | 
						
							| 15 | 14 | ancomd | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( Fun  𝐹  ∧  𝑊  ∈  Word  𝐴 ) ) | 
						
							| 16 | 15 | 3adant2 | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( Fun  𝐹  ∧  𝑊  ∈  Word  𝐴 ) ) | 
						
							| 17 |  | cofunexg | ⊢ ( ( Fun  𝐹  ∧  𝑊  ∈  Word  𝐴 )  →  ( 𝐹  ∘  𝑊 )  ∈  V ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  𝑊 )  ∈  V ) | 
						
							| 19 | 18 2 | jca | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( ( 𝐹  ∘  𝑊 )  ∈  V  ∧  𝑁  ∈  ℕ0 ) ) | 
						
							| 20 |  | pfxval | ⊢ ( ( ( 𝐹  ∘  𝑊 )  ∈  V  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐹  ∘  𝑊 )  prefix  𝑁 )  =  ( ( 𝐹  ∘  𝑊 )  substr  〈 0 ,  𝑁 〉 ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( ( 𝐹  ∘  𝑊 )  prefix  𝑁 )  =  ( ( 𝐹  ∘  𝑊 )  substr  〈 0 ,  𝑁 〉 ) ) | 
						
							| 22 | 8 12 21 | 3eqtr4d | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  ( 𝑊  prefix  𝑁 ) )  =  ( ( 𝐹  ∘  𝑊 )  prefix  𝑁 ) ) |