Step |
Hyp |
Ref |
Expression |
1 |
|
pfxf1.1 |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝑆 ) |
2 |
|
pfxf1.2 |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1→ 𝑆 ) |
3 |
|
pfxf1.3 |
⊢ ( 𝜑 → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
4 |
|
elfzuz3 |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 𝐿 ) ) |
5 |
|
fzoss2 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 𝐿 ) → ( 0 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
6 |
3 4 5
|
3syl |
⊢ ( 𝜑 → ( 0 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
7 |
|
wrddm |
⊢ ( 𝑊 ∈ Word 𝑆 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
9 |
6 8
|
sseqtrrd |
⊢ ( 𝜑 → ( 0 ..^ 𝐿 ) ⊆ dom 𝑊 ) |
10 |
|
wrdf |
⊢ ( 𝑊 ∈ Word 𝑆 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ) |
11 |
1 10
|
syl |
⊢ ( 𝜑 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ) |
12 |
11 6
|
fssresd |
⊢ ( 𝜑 → ( 𝑊 ↾ ( 0 ..^ 𝐿 ) ) : ( 0 ..^ 𝐿 ) ⟶ 𝑆 ) |
13 |
|
f1resf1 |
⊢ ( ( 𝑊 : dom 𝑊 –1-1→ 𝑆 ∧ ( 0 ..^ 𝐿 ) ⊆ dom 𝑊 ∧ ( 𝑊 ↾ ( 0 ..^ 𝐿 ) ) : ( 0 ..^ 𝐿 ) ⟶ 𝑆 ) → ( 𝑊 ↾ ( 0 ..^ 𝐿 ) ) : ( 0 ..^ 𝐿 ) –1-1→ 𝑆 ) |
14 |
2 9 12 13
|
syl3anc |
⊢ ( 𝜑 → ( 𝑊 ↾ ( 0 ..^ 𝐿 ) ) : ( 0 ..^ 𝐿 ) –1-1→ 𝑆 ) |
15 |
|
pfxres |
⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 prefix 𝐿 ) = ( 𝑊 ↾ ( 0 ..^ 𝐿 ) ) ) |
16 |
1 3 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 prefix 𝐿 ) = ( 𝑊 ↾ ( 0 ..^ 𝐿 ) ) ) |
17 |
|
pfxfn |
⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 prefix 𝐿 ) Fn ( 0 ..^ 𝐿 ) ) |
18 |
1 3 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 prefix 𝐿 ) Fn ( 0 ..^ 𝐿 ) ) |
19 |
18
|
fndmd |
⊢ ( 𝜑 → dom ( 𝑊 prefix 𝐿 ) = ( 0 ..^ 𝐿 ) ) |
20 |
|
eqidd |
⊢ ( 𝜑 → 𝑆 = 𝑆 ) |
21 |
16 19 20
|
f1eq123d |
⊢ ( 𝜑 → ( ( 𝑊 prefix 𝐿 ) : dom ( 𝑊 prefix 𝐿 ) –1-1→ 𝑆 ↔ ( 𝑊 ↾ ( 0 ..^ 𝐿 ) ) : ( 0 ..^ 𝐿 ) –1-1→ 𝑆 ) ) |
22 |
14 21
|
mpbird |
⊢ ( 𝜑 → ( 𝑊 prefix 𝐿 ) : dom ( 𝑊 prefix 𝐿 ) –1-1→ 𝑆 ) |