Step |
Hyp |
Ref |
Expression |
1 |
|
elfznn0 |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ℕ0 ) |
2 |
|
pfxval |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑊 prefix 𝐿 ) = ( 𝑊 substr 〈 0 , 𝐿 〉 ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 prefix 𝐿 ) = ( 𝑊 substr 〈 0 , 𝐿 〉 ) ) |
4 |
3
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → ( 𝑊 prefix 𝐿 ) = ( 𝑊 substr 〈 0 , 𝐿 〉 ) ) |
5 |
4
|
fveq1d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → ( ( 𝑊 prefix 𝐿 ) ‘ 𝐼 ) = ( ( 𝑊 substr 〈 0 , 𝐿 〉 ) ‘ 𝐼 ) ) |
6 |
|
simp1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → 𝑊 ∈ Word 𝑉 ) |
7 |
|
0elfz |
⊢ ( 𝐿 ∈ ℕ0 → 0 ∈ ( 0 ... 𝐿 ) ) |
8 |
1 7
|
syl |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 0 ∈ ( 0 ... 𝐿 ) ) |
9 |
8
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → 0 ∈ ( 0 ... 𝐿 ) ) |
10 |
|
simp2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
11 |
1
|
nn0cnd |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ℂ ) |
12 |
11
|
subid1d |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝐿 − 0 ) = 𝐿 ) |
13 |
12
|
eqcomd |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝐿 = ( 𝐿 − 0 ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 0 ..^ 𝐿 ) = ( 0 ..^ ( 𝐿 − 0 ) ) ) |
15 |
14
|
eleq2d |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝐼 ∈ ( 0 ..^ 𝐿 ) ↔ 𝐼 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) ) ) |
16 |
15
|
biimpd |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝐼 ∈ ( 0 ..^ 𝐿 ) → 𝐼 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) ) ) |
17 |
16
|
a1i |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝐼 ∈ ( 0 ..^ 𝐿 ) → 𝐼 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) ) ) ) |
18 |
17
|
3imp |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → 𝐼 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) ) |
19 |
|
swrdfv |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 0 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐼 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) ) → ( ( 𝑊 substr 〈 0 , 𝐿 〉 ) ‘ 𝐼 ) = ( 𝑊 ‘ ( 𝐼 + 0 ) ) ) |
20 |
6 9 10 18 19
|
syl31anc |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → ( ( 𝑊 substr 〈 0 , 𝐿 〉 ) ‘ 𝐼 ) = ( 𝑊 ‘ ( 𝐼 + 0 ) ) ) |
21 |
|
elfzoelz |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝐿 ) → 𝐼 ∈ ℤ ) |
22 |
21
|
zcnd |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝐿 ) → 𝐼 ∈ ℂ ) |
23 |
22
|
addid1d |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝐿 ) → ( 𝐼 + 0 ) = 𝐼 ) |
24 |
23
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → ( 𝐼 + 0 ) = 𝐼 ) |
25 |
24
|
fveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → ( 𝑊 ‘ ( 𝐼 + 0 ) ) = ( 𝑊 ‘ 𝐼 ) ) |
26 |
5 20 25
|
3eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → ( ( 𝑊 prefix 𝐿 ) ‘ 𝐼 ) = ( 𝑊 ‘ 𝐼 ) ) |