| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 2 |  | fz1ssfz0 | ⊢ ( 1 ... ( ♯ ‘ 𝑊 ) )  ⊆  ( 0 ... ( ♯ ‘ 𝑊 ) ) | 
						
							| 3 | 2 | sseli | ⊢ ( 𝐿  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  →  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 5 |  | elfznn | ⊢ ( 𝐿  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  →  𝐿  ∈  ℕ ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  𝐿  ∈  ℕ ) | 
						
							| 7 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ 𝐿 )  ↔  𝐿  ∈  ℕ ) | 
						
							| 8 | 6 7 | sylibr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  0  ∈  ( 0 ..^ 𝐿 ) ) | 
						
							| 9 |  | pfxfv | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  0  ∈  ( 0 ..^ 𝐿 ) )  →  ( ( 𝑊  prefix  𝐿 ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 10 | 1 4 8 9 | syl3anc | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  prefix  𝐿 ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) |