| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pfxcl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  ∈  Word  𝑉 ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  prefix  𝐿 )  ∈  Word  𝑉 ) | 
						
							| 3 |  | lsw | ⊢ ( ( 𝑊  prefix  𝐿 )  ∈  Word  𝑉  →  ( lastS ‘ ( 𝑊  prefix  𝐿 ) )  =  ( ( 𝑊  prefix  𝐿 ) ‘ ( ( ♯ ‘ ( 𝑊  prefix  𝐿 ) )  −  1 ) ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( lastS ‘ ( 𝑊  prefix  𝐿 ) )  =  ( ( 𝑊  prefix  𝐿 ) ‘ ( ( ♯ ‘ ( 𝑊  prefix  𝐿 ) )  −  1 ) ) ) | 
						
							| 5 |  | fz1ssfz0 | ⊢ ( 1 ... ( ♯ ‘ 𝑊 ) )  ⊆  ( 0 ... ( ♯ ‘ 𝑊 ) ) | 
						
							| 6 | 5 | sseli | ⊢ ( 𝐿  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  →  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 7 |  | pfxlen | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  prefix  𝐿 ) )  =  𝐿 ) | 
						
							| 8 | 6 7 | sylan2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  prefix  𝐿 ) )  =  𝐿 ) | 
						
							| 9 | 8 | fvoveq1d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  prefix  𝐿 ) ‘ ( ( ♯ ‘ ( 𝑊  prefix  𝐿 ) )  −  1 ) )  =  ( ( 𝑊  prefix  𝐿 ) ‘ ( 𝐿  −  1 ) ) ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 11 | 6 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 12 |  | elfznn | ⊢ ( 𝐿  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  →  𝐿  ∈  ℕ ) | 
						
							| 13 |  | fzo0end | ⊢ ( 𝐿  ∈  ℕ  →  ( 𝐿  −  1 )  ∈  ( 0 ..^ 𝐿 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝐿  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  →  ( 𝐿  −  1 )  ∈  ( 0 ..^ 𝐿 ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝐿  −  1 )  ∈  ( 0 ..^ 𝐿 ) ) | 
						
							| 16 |  | pfxfv | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( 𝐿  −  1 )  ∈  ( 0 ..^ 𝐿 ) )  →  ( ( 𝑊  prefix  𝐿 ) ‘ ( 𝐿  −  1 ) )  =  ( 𝑊 ‘ ( 𝐿  −  1 ) ) ) | 
						
							| 17 | 10 11 15 16 | syl3anc | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  prefix  𝐿 ) ‘ ( 𝐿  −  1 ) )  =  ( 𝑊 ‘ ( 𝐿  −  1 ) ) ) | 
						
							| 18 | 4 9 17 | 3eqtrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( lastS ‘ ( 𝑊  prefix  𝐿 ) )  =  ( 𝑊 ‘ ( 𝐿  −  1 ) ) ) |