Step |
Hyp |
Ref |
Expression |
1 |
|
elfznn0 |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → 𝐿 ∈ ℕ0 ) |
2 |
|
pfxval |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 prefix 𝐿 ) = ( 𝑆 substr 〈 0 , 𝐿 〉 ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 prefix 𝐿 ) = ( 𝑆 substr 〈 0 , 𝐿 〉 ) ) |
4 |
|
simpl |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → 𝑆 ∈ Word 𝐴 ) |
5 |
1
|
adantl |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → 𝐿 ∈ ℕ0 ) |
6 |
|
0elfz |
⊢ ( 𝐿 ∈ ℕ0 → 0 ∈ ( 0 ... 𝐿 ) ) |
7 |
5 6
|
syl |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → 0 ∈ ( 0 ... 𝐿 ) ) |
8 |
|
simpr |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
9 |
|
swrdval2 |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 0 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 substr 〈 0 , 𝐿 〉 ) = ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 0 ) ) ) ) |
10 |
4 7 8 9
|
syl3anc |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 substr 〈 0 , 𝐿 〉 ) = ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 0 ) ) ) ) |
11 |
|
nn0cn |
⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℂ ) |
12 |
11
|
subid1d |
⊢ ( 𝐿 ∈ ℕ0 → ( 𝐿 − 0 ) = 𝐿 ) |
13 |
1 12
|
syl |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → ( 𝐿 − 0 ) = 𝐿 ) |
14 |
13
|
oveq2d |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → ( 0 ..^ ( 𝐿 − 0 ) ) = ( 0 ..^ 𝐿 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 0 ..^ ( 𝐿 − 0 ) ) = ( 0 ..^ 𝐿 ) ) |
16 |
|
elfzonn0 |
⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) → 𝑥 ∈ ℕ0 ) |
17 |
|
nn0cn |
⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ ) |
18 |
17
|
addid1d |
⊢ ( 𝑥 ∈ ℕ0 → ( 𝑥 + 0 ) = 𝑥 ) |
19 |
16 18
|
syl |
⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) → ( 𝑥 + 0 ) = 𝑥 ) |
20 |
19
|
fveq2d |
⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) → ( 𝑆 ‘ ( 𝑥 + 0 ) ) = ( 𝑆 ‘ 𝑥 ) ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) ) → ( 𝑆 ‘ ( 𝑥 + 0 ) ) = ( 𝑆 ‘ 𝑥 ) ) |
22 |
15 21
|
mpteq12dva |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 0 ) ) ) = ( 𝑥 ∈ ( 0 ..^ 𝐿 ) ↦ ( 𝑆 ‘ 𝑥 ) ) ) |
23 |
3 10 22
|
3eqtrd |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 prefix 𝐿 ) = ( 𝑥 ∈ ( 0 ..^ 𝐿 ) ↦ ( 𝑆 ‘ 𝑥 ) ) ) |